每日一题 - 剑指 Offer 42. 连续子数组的最大和
题目信息
时间: 2019-06-30
题目链接:Leetcode
tag: 动态规划
难易程度:简单
题目描述:
输入一个整型数组,数组里有正数也有负数。数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。
示例:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
提示
1. 1 <= arr.length <= 10^5
2. -100 <= arr[i] <= 100
解题思路
本题难点
常见解法 | 时间复杂度 | 空间复杂度 |
---|---|---|
暴力搜索 | O(N^2) | O(1) |
分治思想 | O(NlogN) | O(logN) |
动态规划 | O(N) | O(1) |
具体思路
动态规划
- 状态定义:设动态规划列表 dp ,dp[i]]代表以元素 nums[i] 为结尾的连续子数组最大和。
- 转移方程: 若 dp[i−1]≤0 ,说明 dp[i−1] 对 dp[i] 产生负贡献,即 dp[i−1]+nums[i] 还不如 nums[i] 本身大。
- 当dp[i-1]>0时,执行dp[i]=dp[i-1] + nums[i]
- 当dp[i-1]<0时,执行dp[i]=nums[i]
- 初始状态:dp[0] = nums[0]
代码
class Solution {
public int maxSubArray(int[] nums) {
if(nums == null || nums.length == 0){
return 0;
}
int sum = nums[0];
int former = 0;//用于记录dp[i-1]的值,对于dp[0]而言,其前面的dp[-1]=0
int cur= nums[0];//用于记录dp[i]的值
for(int num: nums){
if(former <= 0){
cur = num;
}
if(former > 0){
cur = former + num;
}//这两句话等同于 cur = Math.max(former,0) + num;
former = cur;
sum = Math.max(sum,cur);
}
return sum;
}
}
复杂度分析:
- 时间复杂度 O(N) : 线性遍历数组 nums 即可获得结果,使用 O(N) 时间。
- 空间复杂度 O(1) : 使用常数大小的额外空间。
其他优秀解答
解题思路
分治法,我们把数组nums以中间位置(mid)分为左(left)右(right)两部分. 那么有,
left = nums[0]...nums[m - 1] 和 right = nums[m + 1]...nums[n-1]
最大子序列和的位置有以下三种情况:
- 考虑中间元素
nums[m]
, 跨越左右两部分,这里从中间元素开始,往左求出后缀最大,往右求出前缀最大, 保持连续性。 - 不考虑中间元素,最大子序列和出现在左半部分,递归求解左边部分最大子序列和
- 不考虑中间元素,最大子序列和出现在右半部分,递归求解右边部分最大子序列和
代码
class MaximumSubarrayDivideConquer {
public int maxSubArrayDividConquer(int[] nums) {
if (nums == null || nums.length == 0) return 0;
return helper(nums, 0, nums.length - 1);
}
private int helper(int[] nums, int l, int r) {
if (l > r) return Integer.MIN_VALUE;
int mid = (l + r) >>> 1;
int left = helper(nums, l, mid - 1);
int right = helper(nums, mid + 1, r);
int leftMaxSum = 0;
int sum = 0;
// left surfix maxSum start from index mid - 1 to l
for (int i = mid - 1; i >= l; i--) {
sum += nums[i];
leftMaxSum = Math.max(leftMaxSum, sum);
}
int rightMaxSum = 0;
sum = 0;
// right prefix maxSum start from index mid + 1 to r
for (int i = mid + 1; i <= r; i++) {
sum += nums[i];
rightMaxSum = Math.max(sum, rightMaxSum);
}
// max(left, right, crossSum)
return Math.max(leftMaxSum + rightMaxSum + nums[mid], Math.max(left, right));
}
}
每日一题 - 剑指 Offer 42. 连续子数组的最大和的更多相关文章
- 刷题-力扣-剑指 Offer 42. 连续子数组的最大和
剑指 Offer 42. 连续子数组的最大和 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de ...
- 剑指 Offer 42. 连续子数组的最大和 + 动态规划
剑指 Offer 42. 连续子数组的最大和 题目链接 状态定义: 设动态规划列表 \(dp\) ,\(dp[i]\) 代表以元素 \(4nums[i]\) 为结尾的连续子数组最大和. 为何定义最大和 ...
- 力扣 - 剑指 Offer 42. 连续子数组的最大和
题目 剑指 Offer 42. 连续子数组的最大和 思路1(分析数组的规律) 我们可以从头到尾逐个累加,若之前的累加和小于0,那就从丢弃之前的累加,从当前开始重新累加,同时在遍历过程中比较记录下最大值 ...
- 【Java】 剑指offer(42) 连续子数组的最大和
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 输入一个整型数组,数组里有正数也有负数.数组中一个或连续的多个整/ ...
- 剑指 Offer 42. 连续子数组的最大和
题目描述 输入一个整型数组,数组中的一个或连续多个整数组成一个子数组.求所有子数组的和的最大值. 要求时间复杂度为\(O(n)\). 示例1: 输入: nums = [-2,1,-3,4,-1,2,1 ...
- 【剑指Offer】连续子数组的最大和 解题报告(Python)
[剑指Offer]连续子数组的最大和 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews ...
- 《剑指Offer》- 连续子数组的最大和或最小和
前言 本文是<剑指Offer>系列(JavaScript版)的第一篇,题目是"连续子数组的最大和或最小和". 话不多说,开始"打怪"修炼... 一. ...
- Go语言实现:【剑指offer】连续子数组的最大和
该题目来源于牛客网<剑指offer>专题. HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向 ...
- 《剑指offer》连续子数组的最大和
本题来自<剑指offer> 反转链表 题目: 思路: C++ Code: Python Code: 总结:
随机推荐
- Java实现 蓝桥杯 历届试题 国王的烦恼
问题描述 C国由n个小岛组成,为了方便小岛之间联络,C国在小岛间建立了m座大桥,每座大桥连接两座小岛.两个小岛间可能存在多座桥连接.然而,由于海水冲刷,有一些大桥面临着不能使用的危险. 如果两个小岛间 ...
- PAT 反转链表
给定一个常数 K 以及一个单链表 L,请编写程序将 L 中每 K 个结点反转.例如:给定 L 为 1→2→3→4→5→6,K 为 3,则输出应该为 3→2→1→6→5→4:如果 K 为 4,则输出应该 ...
- 浅谈js原型
前言 突发奇想,想写一篇原型的文章,也可能是因为对原型有更深的理解吧,在这里做个记录,来记录下自己的理解加深下记忆. 总之,希望本文的内容能够对您的学习或者工作有所帮助.另,如果有任何的错误或者不足请 ...
- CSAPP 5 - 优化程序性能
CSAPP 5 - 优化程序性能 1. 概述 首当其冲的,还是要编写出好的算法和数据结构,优化内部结构 其次才是编写出能让编译器 易优化的,高效的可执行代码.这点在特定的机器上可能有着特定的不同的优化 ...
- C#通过模板导出Word的两种方法(超简单)
方法一:使用Office的组件 使用该方法必须要安装Office 1.制作Word模板 在需要填充内容的地方增加标识符号,方便之后替换使用,例如 [项目名称],其中[]符号和中间的文字可根据个人情况进 ...
- python flask API 返回状态码
@app.route('/dailyupdate', methods = ['POST','GET'])def dailyUpdate(): try: db=MySQLdb.connect(" ...
- JVM 之 Linux定位CPU过高问题及优化
项目部署以后出行卡顿现象,所以对问题进行了排查,记录一下排查过程 (从CSDN编辑器贴过来的,图有水印) 1.找进程 top 可以发现,是Java进程导致的CPU过高,致使系统卡顿 2.找线程 ps ...
- 单例模式的DCL方式,您不可不知道的知识点
单例模式的DCL是一种比较好的单例实现方式,面试中被问及的频率非常高,考察的方式也多种多样.这里简单整理了一下,这里面的每一个点最好都能够做到烂熟于心: 1 public class Test { 2 ...
- 【大厂面试08期】谈一谈你对HashMap的理解?
摘要 HashMap的原理也是大厂面试中经常会涉及的问题,同时也是工作中常用到的Java容器,本文主要通过对以下问题进行分析讲解,来帮助大家理解HashMap的原理. 1.HashMap添加一个键值对 ...
- CVE-2017-7269-iis远程溢出漏洞复现
##01漏洞描述 cve_2017_7269漏洞属于高危漏洞,是由Zhiniang Peng和Chen Wu(华南理工大学信息安全实验室,计算机科学与工程学院)发现的.IIS 6.0开启Webdav服 ...