【学习笔记】 2-SAT问题
Algorithm Description
\(2-SAT\)问题就是给定一串布尔变量,每个变量只能为真或假。
要求对这些变量进行赋值,满足布尔方程。
会有一些形如 \(x_1||x_2\) 或者 \(x_5||(!x_6)\) 的条件
所谓布尔方程就是赋值之后满足所有的条件
首先扯一句,如果这个条件变成三或者三以上个\(x\)相关的了,就只能\(2^n\)枚举了
(好像是 \(N-SAT\) 问题是 \(NP\) 完全的)
然后我们思考如何求解这样的问题
前人告诉我们,可以把这些变量转移到图上进行操作
\]
首先拆点: \(i->i\) 同时 \((!i)->i+n\)
然后我们我们考虑建图的时候
对于每一个条件: \(a||b\) ,连上 \((!a)->b\) 和 \((!b)->a\) 的两条有向边
这里可以理解成【\(b\) 假则 \(a\) 必须真,\(a\) 假则 \(b\)必须真】
考虑 \(tarjan\) 求一波强连通分量,如果有 \(scc[i]==scc[i+n]\) 直接无解
显然真假是不一样的(就是不能赋相同的值)
\]
如果要跑方案,就直接输出\([scc[i]<scc[i+n]]\) 就好
例题
由于实在是模板题(不知为啥当时放这么一个纯板子……),就不写了
Code:
#include<bits/stdc++.h>
using namespace std;
#define int long long
namespace yspm{
inline int read()
{
int res=0,f=1; char k;
while(!isdigit(k=getchar())) if(k=='-') f=-1;
while(isdigit(k)) res=res*10+k-'0',k=getchar();
return res*f;
}
const int N=4e6+10;
int n,m,a,b,x,y,tim,top,tot,cnt;
int dfn[N],low[N],st[N],vis[N],scc[N],head[N];
struct node{int to,nxt;}e[N];
inline void add(int u,int v){e[++cnt].nxt=head[u],e[cnt].to=v; head[u]=cnt; return ;}
inline void tarjan(int u,int fa)
{
dfn[u]=low[u]=++tim; st[++top]=u; vis[u]=1;
for(int i=head[u];i;i=e[i].nxt)
{
int t=e[i].to; if(t==fa) continue;
if(!dfn[t]) tarjan(t,u),low[u]=min(low[u],low[t]);
else if(vis[t]) low[u]=min(low[u],dfn[t]);
}
if(dfn[u]==low[u])
{
tot++; while(st[top]!=u) scc[st[top]]=tot,vis[st[top--]]=0;
scc[st[top]]=tot; vis[st[top--]]=0;
}
return ;
}
signed main()
{
n=read(); m=read();
for(int i=1;i<=m;++i)
{
a=read(); x=read(); b=read(); y=read();
if(!x&&!y) add(a+n,b),add(b+n,a);
if(!x&&y) add(a+n,b+n),add(b,a);
if(x&&!y) add(a,b),add(b+n,a+n);
if(x&&y) add(a,b+n),add(b,a+n);
}
for(int i=1;i<=2*n;++i) if(!dfn[i]) tarjan(i,0);
for(int i=1;i<=n;++i)
{
if(scc[i]==scc[i+n]) return puts("IMPOSSIBLE"),0;
}
puts("POSSIBLE"); for(int i=1;i<=n;++i) printf(scc[i]>scc[i+n]?"1 ":"0 ");
return 0;
}
}
signed main(){return yspm::main();}
瞎看吧,这个 \(add\) 压行有点严重了,没去格式化 \(2333\)
【学习笔记】 2-SAT问题的更多相关文章
- <老友记>学习笔记
这是六个人的故事,从不服输而又有强烈控制欲的monica,未经世事的千金大小姐rachel,正直又专情的ross,幽默风趣的chandle,古怪迷人的phoebe,花心天真的joey——六个好友之间的 ...
- OGG学习笔记02-单向复制配置实例
OGG学习笔记02-单向复制配置实例 实验环境: 源端:192.168.1.30,Oracle 10.2.0.5 单实例 目标端:192.168.1.31,Oracle 10.2.0.5 单实例 1. ...
- python数据分析入门学习笔记
学习利用python进行数据分析的笔记&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分 ...
- 【MarkMark学习笔记学习笔记】javascript/js 学习笔记
1.0, 概述.JavaScript是ECMAScript的实现之一 2.0,在HTML中使用JavaScript. 2.1 3.0,基本概念 3.1,ECMAScript中的一切(变量,函数名,操作 ...
- Linux 学习笔记之超详细基础linux命令 Part 13
Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 ---------------------------------接Part 12---------------- ...
- Linux 学习笔记之超详细基础linux命令 Part 8
Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 ---------------------------------接Part 7----------------- ...
- Deep learning with Python 学习笔记(5)
本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一 ...
- 【Redis】命令学习笔记——字符串(String)(23个超全字典版)
Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zset(sorted set:有序集合). 本篇基于redis 4.0.11版本,学习字符串( ...
- programming-languages学习笔记--第3部分
programming-languages学习笔记–第3部分 */--> pre.src {background-color: #292b2e; color: #b2b2b2;} pre.src ...
- 学习笔记 - 2sat
学习笔记 - 2sat 决定重新启用Markdown--只是因为它支持MathJax数学公式 noip考完,既轻松又无奈,回来慢慢填坑 这篇博客也是拖了好久,通过kuangbin的博客才弄懂2-sat ...
随机推荐
- PHP常用的数学函数和字符串函数
PHP常用函数总结 数学函数 1.abs(): 求绝对值 $abs = abs(-4.2); //4.2 数字绝对值数字 2.ceil(): 进一法取整 echo ceil(9.999); // 10 ...
- B站 React教程笔记day1(4)调色板案例
视频地址 main.js import React from "react" import { render } from "react-dom" import ...
- CocoaPods安装/卸载/初始化等常用操作
CocoaPods的官网:https://cocoapods.org/,官方指导文档https://guides.cocoapods.org/ 1)ruby gem源更换国内源gems.ruby-ch ...
- gentoo 修改键盘映射
gentoo 上面修改键盘映射分为两种,一种是终端环境,一种是X环境. 终端环境 https://www.emacswiki.org/emacs/MovingTheCtrlKey https://wi ...
- C# 基本元素
一.构成C#的基本元素 注释和空白编译器不会编译,自动忽略:而标记是可以通过编译器编译的. 关键字 (keyword) 官方定义:关键字是类似标识符的保留的字符序列,不能用作标识符(以 @ 字符开头时 ...
- python期末复习—列表
列表:列表元素需用逗号分隔,放在方括号里,如:list=['Q',15];元素类型可以是数字,单个字符,字符串,列表.字符串和字符需要用单引号引起来. 访问列表:print(列表名[0])访问第一个元 ...
- PAT Advanced 1034 Head of a Gang (30) [图的遍历,BFS,DFS,并查集]
题目 One way that the police finds the head of a gang is to check people's phone calls. If there is a ...
- POJ 1502:MPI Maelstrom Dijkstra模板题
MPI Maelstrom Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6499 Accepted: 4036 Des ...
- 新iPhone要推出双卡双待这事是真的吗?
自2007年发布以来,iPhone似乎一直都是"异类"--以自己独特的方式走着一条引领智能手机前进的路!如,在当年遍地按键键盘的年代,iPhone以触摸屏的奇葩姿态引领了新潮流:刚 ...
- 配置gitlab代码提交之后自动触发jenkins
https://www.cnblogs.com/bugsbunny/p/7919993.html