Wannafly Winter Camp 2020 Day 5B Bitset Master - 时间倒流
有 \(n\) 个点的树,给定 \(m\) 次操作,每个点对应一个集合,初态下只有自己。
第 \(i\) 次操作给定参数 \(p_i\),意为把 \(p_i\) 这条边的两个点的集合合并,并分别发配回这两个点
最后求每个点出现在多少个集合中
Solution
换个问题,求每个集合最后的大小。我们发现,如果将 \(u,v\) 合并,那么 \(f[u]=f[v]=f[u]+f[v]-f[u] \bigcap f[v]\)
而 \(f[u] \bigcap f[v]\) 之和上一次 \(u,v\) 合并的结果有关,于是我们可以对每条边单独记录一个数,表示上一次合并这条边的结果
回到原问题,我们发现,每个点被哪些集合包含,只需要倒叙处理新问题就可以得到原问题的答案
#include <bits/stdc++.h>
using namespace std;
const int N = 1000005;
int n,m,p[N],x[N],y[N],f[N],g[N];
void read(int &x) {
scanf("%d",&x);
}
void write(int x,int flag) {
printf("%d",x);
if(flag==0) putchar(' ');
else puts("");
}
signed main() {
read(n);read(m);
for(int i=1;i<n;i++) read(x[i]), read(y[i]);
for(int i=1;i<=m;i++) read(p[i]);
for(int i=1;i<=n;i++) f[i]=1;
for(int i=m;i>=1;--i) {
int u=x[p[i]], v=y[p[i]];
f[u]=f[v]=f[u]+f[v]-g[p[i]];
g[p[i]]=f[u];
}
for(int i=1;i<=n;i++) write(f[i],i==n);
}
Wannafly Winter Camp 2020 Day 5B Bitset Master - 时间倒流的更多相关文章
- Wannafly Winter Camp 2020 Day 5J Xor on Figures - 线性基,bitset
有一个\(2^k\cdot 2^k\) 的全零矩阵 \(M\),给出 \(2^k\cdot 2^k\) 的 \(01\) 矩阵 \(F\),现在可以将 \(F\) 的左上角置于 \(M\) 的任一位置 ...
- Wannafly Winter Camp 2020 Day 7E 上升下降子序列 - 数学
神奇公式 #include <bits/stdc++.h> using namespace std; #define int long long int n,mod,c[205][205] ...
- Wannafly Winter Camp 2020 Day 7D 方阵的行列式 - 数学
于是去弄了个板子来 #include <bits/stdc++.h> using namespace std; #define int long long const int mod = ...
- Wannafly Winter Camp 2020 Day 7A 序列 - 树状数组
给定一个全排列,对于它的每一个子序列 \(s[1..p]\),对于每一个 \(i \in [1,p-1]\),给 \(s[i],s[i+1]\) 间的每一个值对应的桶 \(+1\),求最终每个桶的值. ...
- Wannafly Winter Camp 2020 Day 6J K重排列 - dp
求 \(K\) 是多少个 \(n\) 元置换的周期.\(T\leq 100, n\leq 50, K \leq 10^{18}\) Solution 置换可以被试做若干个环组成的有向图,于是考虑 dp ...
- Wannafly Winter Camp 2020 Day 6I 变大! - dp
给定一个序列,可以执行 \(k\) 次操作,每次选择连续的三个位置,将他们都变成他们的最大值,最大化 \(\sum a_i\) 需要对每一个 \(k=i\) 输出答案 \(n \leq 50, a_i ...
- Wannafly Winter Camp 2020 Day 6H 异或询问 - 二分
给定一个长 \(n\) 的序列 \(a_1,\dots,a_n\),定义 \(f(x)\) 为有多少个 \(a_i \leq x\) 有 \(q\) 次询问,每次给定 \(l,r,x\),求 \(\s ...
- Wannafly Winter Camp 2020 Day 6G 单调栈 - 贪心
对于排列 \(p\),它的单调栈 \(f\) 定义为,\(f_i\) 是以 \(p_i\) 结尾的最长上升子序列的长度 先给定 \(f\) 中一些位置的值,求字典序最小的 \(p\) 使得它满足这些值 ...
- Wannafly Winter Camp 2020 Day 6D 递增递增 - dp,组合数学
给定两个常为 \(n\) 的序列 \(l_i,r_i\),问夹在它们之间 ( \(\forall i, l_i \leq a_i \leq r_i\) ) 的不降序列的元素总和. Solution 先 ...
随机推荐
- 05讲基础篇:某个应用的CPU使用率居然达到100%,我该怎么办
小结 CPU 使用率是最直观和最常用的系统性能指标,更是我们在排查性能问题时,通常会关注的第一个指标.所以我们更要熟悉它的含义,尤其要弄清楚用户(%user).Nice(%nice).系统(%syst ...
- ubuntu16.04+Opencv3.4.0安装(slam版)
本文记录ubuntu下安装opencv过程,步骤来自 opencv官网可以对照官网步骤:https://docs.opencv.org/3.4.0/d7/d9f/tutorial_linux_inst ...
- CCF_201503-2_数字排序
自己写个排序的cmp. #include<iostream> #include<cstdio> #include<algorithm> using namespac ...
- Comb使用2
只需添加如下内容 AndroidManifest中添加如下 不要忘记修改application ID与Comb对应 最好不要采用将combSDK lib文件添加到工程中否则可能连接不了Comb 如果添 ...
- 牛客练习赛25 A 因数个数和(数论分块)
题意: q次询问,每次给一个x,问1到x的因数个数的和. 1<=q<=10 ,1<= x<=10^9 1s 思路: 对1~n中的每个数i,i作为i,2i,3i,...的约数,一 ...
- Codeforces 924 A Tritonic Iridescence(暴力集合交集、相等)
题目链接:点击打开链接 There is a rectangular grid of n rows of m initially-white cells each. Arkady performed ...
- Docker的基本使用与简介
1 Docker简介 1.1 什么是虚拟化 在计算机中,虚拟化(英语:Virtualization)是一种资源管理技术,是将计算机的各种实体资源,如服务器.网络.内存及存储等,予以抽象.转换后呈现出来 ...
- 12-Java-myeclipse集成Tomcat步骤及Tomcat的使用步骤
一.了解Tomcat Tomcat是由Apache推出的一款免费开源的servlet容器/web应用服务器,可实现javaweb程序的装载,是配置JSP和java系统必备的一款环境 Tomcat目 ...
- 记一次kubernetes驱逐踩坑
最近在公司的线上服务器上发现了一个现象: 将某个node的kubelet短暂的停掉之后,其上的pod马上会被驱逐,这让笔者大吃一惊,印象之中,停掉kubelet后,该node会变为NotReady状态 ...
- postfix 被当作垃圾邮件中转站
磁盘 io 总是满的状态 该服务器只有监控和邮件elk在上面. 发现邮件日志 疯狂的输出 tail -f /var/log/maillog 大致都是来自于 yahoo.com.tw的东西 清空了 /v ...