UVa - 12050 Palindrome Numbers (二分)
Solve the equation:
p ∗ e −x + q ∗ sin(x) + r ∗ cos(x) + s ∗ tan(x) + t ∗ x 2 + u = 0
where 0 ≤ x ≤ 1.
Input
Input consists of multiple test cases and terminated by an EOF. Each test case consists of 6 integers in a single line: p, q, r, s, t and u (where 0 ≤ p, r ≤ 20 and −20 ≤ q, s, t ≤ 0). There will be maximum 2100 lines in the input file.
Output
For each set of input, there should be a line containing the value of x, correct up to 4 decimal places, or the string ‘No solution’, whichever is applicable.
Sample Input
0 0 0 0 -2 1
1 0 0 0 -1 2
1 -1 1 -1 -1 1
Sample Output
0.7071
No solution
0.7554
题意:给出一个方程,求解X;
思路:因为方程是单调递减的,所以二分求解;
#include<iostream>
#include<cstdio>
#include<cmath>
#define EPS (10e-8)
using namespace std;
double p,q,r,s,t,u;
inline double fomula(double x){
return p*exp(-x)+q*sin(x)+r*cos(x)+s*tan(x)+t*x*x+u;
}
int main(){
while(scanf("%lf%lf%lf%lf%lf%lf",&p,&q,&r,&s,&t,&u)!=EOF){
double left=, right=, mid;
bool flag=false;
if(fomula(left)*fomula(right) > ){
printf("No solution\n");
continue;
}
while(right-left > EPS){
mid = (left+right)/;
if(fomula(mid)*fomula(left) > ) left=mid;
else right=mid;
} printf("%.4f\n", mid);
}
return ;
}
UVa - 12050 Palindrome Numbers (二分)的更多相关文章
- Uva - 12050 Palindrome Numbers【数论】
题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...
- POJ2402/UVA 12050 Palindrome Numbers 数学思维
A palindrome is a word, number, or phrase that reads the same forwards as backwards. For example,the ...
- UVa 12050 - Palindrome Numbers (回文数)
A palindrome is a word, number, or phrase that reads the same forwards as backwards. For example, th ...
- UVA 12050 - Palindrome Numbers 模拟
题目大意:给出i,输出第i个镜像数,不能有前导0. 题解:从外层开始模拟 #include <stdio.h> int p(int x) { int sum, i; ;i<=x;i+ ...
- UVa 10006 - Carmichael Numbers
UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...
- Palindrome Numbers(LA2889)第n个回文数是?
J - Palindrome Numbers Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu ...
- 2017ecjtu-summer training #1 UVA 12050
A palindrome is a word, number, or phrase that reads the same forwards as backwards. For example, th ...
- UVa - 12050
A palindrome is a word, number, or phrase that reads the same forwards as backwards. For example,the ...
- UVA.136 Ugly Numbers (优先队列)
UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...
随机推荐
- Github搜索技巧
按仓库名称.说明或自述文件内容搜索 通过 in 限定符,您可以将搜索限制为仓库名称.仓库说明.自述文件内容或这些的任意组合. 如果省略此限定符,则只搜索仓库名称和说明. 限定符 示例 in:name ...
- UnsupportedClassVersionError : 不支持的类版本错误
UnsupportedClassVersionError : 不支持的类版本错误 listenerStart配置类的应用程序侦听器时出错 listenerStart Error configuring ...
- js—二进制中1的个数
题目描述 输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. 做题思路 代码 function NumberOf1(n) { // write code here var cnt = 0 ...
- 1.3.5 详解项目中的资源——Android第一行代码(第二版)笔记
所有以drawable开头的文件夹都是用来存放图片的. 所有以mipmap开头的文件夹都是用来存放应用图标的 所有以values开头的文件夹都是用来存放字符串.样式.颜色等配置的, layout文件夹 ...
- 展讯sprd_battery.c 充电驱动
sprd_battery.c 是充电驱动,这个是充电功能的核心内容,电量显示策略.温度检测策略.充电保护机制等功能在这里实现,功能实现与硬件细节剥离,调用通用接口实现逻辑控制: 1 sprdbat_p ...
- kubernetes 资源管理
前言 在kubernetes环境下,无论集群再大,对应的集群资源(cpu.memory.storage)总是有上限的.而默认情况下,我们启动的pod.以及pod中运行的容器,对应的资源是不加限制的.理 ...
- 安装NodeJs和NPM到Ubuntu(APT)
运行环境 系统版本:Ubuntu 16.04.2 LTS 软件版本:node-v10.16.3.npm-6.9.0 硬件要求:无 安装过程 1.安装NPM和NodeJs root@localhost: ...
- VSCode 完美整合前后端框架(angular2+.NET core)
首先打开命令行查看本地.NET版本. 通过命令行安装模板. dotnet new --install Microsoft.AspNetCore.SpaTemplates::* 创建demo目录,并用v ...
- udp socket 10054
udp socket 10054 在接收端没有启动的情况下 1.直接ReceiveFrom没问题. 2.如果先SendTo再ReceiveFrom,SendTo可以正常过,但是RecieveFrom会 ...
- Docker Stack 学习笔记
该文为<深入浅出Docker>的学习笔记,感谢查看,如有错误,欢迎指正 一.简介 Docker Stack 是为了解决大规模场景下的多服务部署和管理,提供了期望状态,滚动升级,简单易用,扩 ...