题目描述

小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话:

对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点 s 和 t 不在同一个部分中,则称这个划分是关于 s,t 的割。对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而 s,t的最小割指的是在关于 s,t的割中容量最小的割。

现给定一张无向图,小白有若干个形如“图中有多少个无序点对的最小割的容量不超过 x ”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为小蓝的好友,你又有任务了。

输入格式

本题有多组测试数据。

第一行一个整数 T,表示测试数据组数。

对于每组测试数据,第一行两个整数 n,m,表示图的点数和边数。

接下来 m 行,每行三个整数 u,v,c表示有一条权为 ccc 的无向边 (u,v)。不保证图中无重边。

接下来一行一个整数 q 表示询问的个数,下面 q 行每行一个整数 x 描述一组询问。

输出格式

对于每一组测试数据输出 q 行,每行一个整数表示对应询问的答案。对于满足条件的点对 (p,q)和点对 (q,p) 只应该在答案中统计一次。

在两组测试数据之间需要输出一行空行。

输入输出样例

输入 #1

1

5 0

1

0

输出 #1

10

说明/提示

对于 100 的数据,1≤T≤10 ,1≤n≤150,0≤m≤30000,$$1 \leq x \leq 2^{31} - 1 $$ ,0≤q≤300

题解

最小割树(或者就是分治) , 每次选出两个点求出他们的最小割 , 在用这个值更新两边的最小割。

这题不难 , 但我还是调了好久(人话:我好弱啊!!!)

注意

1.题里给的是无向图 , 要建双向边 , 网络流如果要建双向边就不用对每个边再建那流量为0的边了。

2.\(ans[i][j]\) 更新时 \(ans[j][i]\) 也得更新啊!!

3.多测清空。

4.每组数组做完之后要输出回车

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<cstring>
#include<queue>
#include<cmath>
using namespace std;
const int N = 1005 , M = 100100 , inf = 2e9;
inline int read()
{
register int x = 0 , f = 0; register char c = getchar();
while(c < '0' || c > '9') f |= c == '-' , c = getchar();
while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0' , c = getchar();
return f ? -x : x;
}
int n , m , S , T , cnt = 1;
int d[N] , vis[N] , head[N] , ans[N][N] , t1[N] , t2[N] , a[N];
struct edge{ int v , nex , c; } e[M];
inline void add(int u , int v , int c) { e[++cnt].v = v; e[cnt].nex = head[u]; e[cnt].c = c; head[u] = cnt; e[++cnt].v = u; e[cnt].nex = head[v]; e[cnt].c = c; head[v] = cnt; return ; } queue<int> q;
bool bfs()
{
memset(d , 0 , sizeof d); d[S] = 1; q.push(S);
while(q.size())
{
int x = q.front(); q.pop();
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(d[v] || e[i].c == 0) continue;
d[v] = d[x] + 1; q.push(v);
}
}
return d[T] != 0;
} int dfs(int x , int flow)
{
if(x == T || flow == 0) return flow;
int res = 0 , k;
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(e[i].c == 0 || d[v] != d[x] + 1) continue;
k = dfs(v , min(e[i].c , flow));
if(k)
{
e[i].c -= k; e[i^1].c += k; res += k; flow -= k;
if(flow == 0) return res;
}
else d[v] = 0;
}
return res;
} int Dinic()
{
for(int i = 2 ; i <= cnt ; i += 2) e[i].c = e[i^1].c = (e[i^1].c + e[i].c) >> 1;
int ans = 0 , flow;
while(bfs()) while(flow = dfs(S , inf)) ans += flow;
return ans;
} void dfs(int x)
{
vis[x] = 1;
for(int i = head[x] ; i ; i = e[i].nex)
if(e[i].c && !vis[e[i].v]) dfs(e[i].v);
return ;
} void calc(int l , int r)
{
if(l >= r) return ;
memset(vis , 0 , sizeof vis);
S = a[l]; T = a[r]; int flow = Dinic() , cnt1 = 0 , cnt2 = 0; dfs(S);
for(int i = 1 ; i <= n ; ++i) if(vis[i]) for(int j = 1 ; j <= n ; ++j) if(!vis[j]) /*!!!!!!!!!!*/ ans[j][i] = ans[i][j] = min(ans[i][j] , flow);
for(int i = l ; i <= r ; ++i) if(vis[a[i]]) t1[++cnt1] = a[i]; else t2[++cnt2] = a[i];
for(int i = 1 ; i <= cnt1 ; ++i) a[l + i - 1] = t1[i];
for(int i = 1 ; i <= cnt2 ; ++i) a[l + i + cnt1 - 1] = t2[i];
calc(l , l + cnt1 - 1); calc(l + cnt1 , r);
return;
} int solve()
{
n = read(); m = read();
for(int i = 1 , u , v , c ; i <= m ; ++i) u = read() , v = read() , c = read() , add(u , v , c);
for(int i = 1 ; i <= n ; ++i) a[i] = i; memset(ans , 0x3f , sizeof ans);
calc(1 , n);
int Q = read();
while(Q--)
{
int x = read() , res = 0;
for(int i = 1 ; i <= n ; ++i) for(int j = i + 1 ; j <= n ; ++j) if(ans[i][j] <= x) res++;
cout << res << '\n';
}
memset(head , 0 , sizeof head); cnt = 1;
return 0;
} signed main()
{
// freopen("10.in" , "r" , stdin);
int T = read();
while(T --) solve() , cout << '\n';
return 0;
}
/*
2
5 0
1
0
5 0
1
0
*/

P3329 [ZJOI2011]最小割的更多相关文章

  1. BZOJ 2229 / Luogu P3329 [ZJOI2011]最小割 (分治最小割板题)

    题面 求所有点对的最小割中<=c的数量 分析 分治最小割板题 首先,注意这样一个事实:如果(X,Y)是某个s1-t1最小割,(Z,W)是某个s2-t2最小割,那么X∩Z.X∩W.Y∩Z.Y∩W这 ...

  2. BZOJ2229: [Zjoi2011]最小割

    题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...

  3. 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)

    [BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...

  4. bzoj千题计划139:bzoj2229: [Zjoi2011]最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=2229 最小割树介绍:http://blog.csdn.net/jyxjyx27/article/de ...

  5. [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割

    题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...

  6. 【BZOJ2229】[Zjoi2011]最小割 最小割树

    [BZOJ2229][Zjoi2011]最小割 Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有 ...

  7. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  8. 【洛谷P3329】 [ZJOI2011]最小割(最小割树)

    洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树 ...

  9. [bzoj2229][Zjoi2011]最小割_网络流_最小割树

    最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...

随机推荐

  1. centos6.5下编译安装单实例MySQL5.1

    MySQL5.1版本安装3步曲: 1) ./config 指定编译安装参数 2) make 3) make install 查看系统版本号 [root@meinv01 ~]# cat /etc/red ...

  2. Linux Samba文件共享服务,安装与案例配置

    Samba服务器安装和配置 1:安装Samba服务器软件包 [root@localhost ~]# rpm -qa | grep samba [root@localhost ~]# yum -y in ...

  3. 如何优雅的封装requests

    搭建接口自动化测试框架,一般都要对post/get请求做封装. 一般的封装过程是, class MyRequest: def my_post(): """do somet ...

  4. datagridview 如何显示记载中

    要实现如下效果,有何思路?

  5. 发布到IIS的php网站,所有的页面打开都是空白,目录权限问题,已解决

    查了下,html可以打开,百度下原因,是网站目录没有写权限所致,修改下权限正常显示

  6. mysql升级到5.7

    最近遇到一个问题,执行下列语句会报错: CREATE TABLE `t_user` ( `USER_ID` bigint() NOT NULL AUTO_INCREMENT COMMENT '用户ID ...

  7. maven的核心概念——坐标

    7.1 几何中的坐标 [1]在一个平面中使用x.y两个向量可以唯一的确定平面中的一个点. [2]在空间中使用x.y.z三个向量可以唯一的确定空间中的一个点. 7.2 Maven的坐标 使用如下三个向量 ...

  8. comTest.json文件中内容,被NewsList.vue文件引入

    本文目标:就是把扩散名为.json文件中数据,传递给NewsList.vue文件.主要通过导出,并传递给data(){}变紧 新建文件名为:commTest.json { "schoolNa ...

  9. 【笔记】机器学习 - 李宏毅 - 5 - Classification

    Classification: Probabilistic Generative Model 分类:概率生成模型 如果说对于分类问题用回归的方法硬解,也就是说,将其连续化.比如 \(Class 1\) ...

  10. IntelliJ IDEA 2019.3注册码(亲测有效,可激活至 2089 年,持续更新~)

    申明:本教程 IntelliJ IDEA 破解补丁.激活码均收集于网络,请勿商用,仅供个人学习使用,如有侵权,请联系作者删除. 注意 本教程适用于 IntelliJ IDEA 所有版本,请放心食用~ ...