P3329 [ZJOI2011]最小割
题目描述
小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话:
对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点 s 和 t 不在同一个部分中,则称这个划分是关于 s,t 的割。对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而 s,t的最小割指的是在关于 s,t的割中容量最小的割。
现给定一张无向图,小白有若干个形如“图中有多少个无序点对的最小割的容量不超过 x ”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为小蓝的好友,你又有任务了。
输入格式
本题有多组测试数据。
第一行一个整数 T,表示测试数据组数。
对于每组测试数据,第一行两个整数 n,m,表示图的点数和边数。
接下来 m 行,每行三个整数 u,v,c表示有一条权为 ccc 的无向边 (u,v)。不保证图中无重边。
接下来一行一个整数 q 表示询问的个数,下面 q 行每行一个整数 x 描述一组询问。
输出格式
对于每一组测试数据输出 q 行,每行一个整数表示对应询问的答案。对于满足条件的点对 (p,q)和点对 (q,p) 只应该在答案中统计一次。
在两组测试数据之间需要输出一行空行。
输入输出样例
输入 #1
1
5 0
1
0
输出 #1
10
说明/提示
对于 100 的数据,1≤T≤10 ,1≤n≤150,0≤m≤30000,$$1 \leq x \leq 2^{31} - 1 $$ ,0≤q≤300
题解
最小割树(或者就是分治) , 每次选出两个点求出他们的最小割 , 在用这个值更新两边的最小割。
这题不难 , 但我还是调了好久(人话:我好弱啊!!!)
注意
1.题里给的是无向图 , 要建双向边 , 网络流如果要建双向边就不用对每个边再建那流量为0的边了。
2.\(ans[i][j]\) 更新时 \(ans[j][i]\) 也得更新啊!!
3.多测清空。
4.每组数组做完之后要输出回车
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<cstring>
#include<queue>
#include<cmath>
using namespace std;
const int N = 1005 , M = 100100 , inf = 2e9;
inline int read()
{
register int x = 0 , f = 0; register char c = getchar();
while(c < '0' || c > '9') f |= c == '-' , c = getchar();
while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0' , c = getchar();
return f ? -x : x;
}
int n , m , S , T , cnt = 1;
int d[N] , vis[N] , head[N] , ans[N][N] , t1[N] , t2[N] , a[N];
struct edge{ int v , nex , c; } e[M];
inline void add(int u , int v , int c) { e[++cnt].v = v; e[cnt].nex = head[u]; e[cnt].c = c; head[u] = cnt; e[++cnt].v = u; e[cnt].nex = head[v]; e[cnt].c = c; head[v] = cnt; return ; }
queue<int> q;
bool bfs()
{
memset(d , 0 , sizeof d); d[S] = 1; q.push(S);
while(q.size())
{
int x = q.front(); q.pop();
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(d[v] || e[i].c == 0) continue;
d[v] = d[x] + 1; q.push(v);
}
}
return d[T] != 0;
}
int dfs(int x , int flow)
{
if(x == T || flow == 0) return flow;
int res = 0 , k;
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(e[i].c == 0 || d[v] != d[x] + 1) continue;
k = dfs(v , min(e[i].c , flow));
if(k)
{
e[i].c -= k; e[i^1].c += k; res += k; flow -= k;
if(flow == 0) return res;
}
else d[v] = 0;
}
return res;
}
int Dinic()
{
for(int i = 2 ; i <= cnt ; i += 2) e[i].c = e[i^1].c = (e[i^1].c + e[i].c) >> 1;
int ans = 0 , flow;
while(bfs()) while(flow = dfs(S , inf)) ans += flow;
return ans;
}
void dfs(int x)
{
vis[x] = 1;
for(int i = head[x] ; i ; i = e[i].nex)
if(e[i].c && !vis[e[i].v]) dfs(e[i].v);
return ;
}
void calc(int l , int r)
{
if(l >= r) return ;
memset(vis , 0 , sizeof vis);
S = a[l]; T = a[r]; int flow = Dinic() , cnt1 = 0 , cnt2 = 0; dfs(S);
for(int i = 1 ; i <= n ; ++i) if(vis[i]) for(int j = 1 ; j <= n ; ++j) if(!vis[j]) /*!!!!!!!!!!*/ ans[j][i] = ans[i][j] = min(ans[i][j] , flow);
for(int i = l ; i <= r ; ++i) if(vis[a[i]]) t1[++cnt1] = a[i]; else t2[++cnt2] = a[i];
for(int i = 1 ; i <= cnt1 ; ++i) a[l + i - 1] = t1[i];
for(int i = 1 ; i <= cnt2 ; ++i) a[l + i + cnt1 - 1] = t2[i];
calc(l , l + cnt1 - 1); calc(l + cnt1 , r);
return;
}
int solve()
{
n = read(); m = read();
for(int i = 1 , u , v , c ; i <= m ; ++i) u = read() , v = read() , c = read() , add(u , v , c);
for(int i = 1 ; i <= n ; ++i) a[i] = i; memset(ans , 0x3f , sizeof ans);
calc(1 , n);
int Q = read();
while(Q--)
{
int x = read() , res = 0;
for(int i = 1 ; i <= n ; ++i) for(int j = i + 1 ; j <= n ; ++j) if(ans[i][j] <= x) res++;
cout << res << '\n';
}
memset(head , 0 , sizeof head); cnt = 1;
return 0;
}
signed main()
{
// freopen("10.in" , "r" , stdin);
int T = read();
while(T --) solve() , cout << '\n';
return 0;
}
/*
2
5 0
1
0
5 0
1
0
*/
P3329 [ZJOI2011]最小割的更多相关文章
- BZOJ 2229 / Luogu P3329 [ZJOI2011]最小割 (分治最小割板题)
题面 求所有点对的最小割中<=c的数量 分析 分治最小割板题 首先,注意这样一个事实:如果(X,Y)是某个s1-t1最小割,(Z,W)是某个s2-t2最小割,那么X∩Z.X∩W.Y∩Z.Y∩W这 ...
- BZOJ2229: [Zjoi2011]最小割
题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...
- 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)
[BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...
- bzoj千题计划139:bzoj2229: [Zjoi2011]最小割
http://www.lydsy.com/JudgeOnline/problem.php?id=2229 最小割树介绍:http://blog.csdn.net/jyxjyx27/article/de ...
- [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割
题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...
- 【BZOJ2229】[Zjoi2011]最小割 最小割树
[BZOJ2229][Zjoi2011]最小割 Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有 ...
- bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)
2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...
- 【洛谷P3329】 [ZJOI2011]最小割(最小割树)
洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树 ...
- [bzoj2229][Zjoi2011]最小割_网络流_最小割树
最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...
随机推荐
- opencv简单实用(cv2)
一.介绍 安装:pip install opencv-python OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS ...
- python 实现 跳一跳游戏 代码解析
这个代码实现的是 手动点击起点 和 终点 ,程序自动判断距离.触屏时间 完成跳跃 原理(摘自项目说明页面):1. 将手机点击到“跳一跳”小程序界面:2. 用Adb 工具获取当前手机截图,并用a ...
- php oci 和 pdo_oci 安装
安装非常复杂,必须记录 CentOS服务器上已有相关环境:apache.php5 需要安装:1.oracle客户端.2.oci8扩展.3.pdo_oci扩展. 一. 准备文件 1) oracle客户端 ...
- PWA 学习笔记
深入学习网址:https://developer.mozilla.org/zh-CN/docs/Web/Progressive_web_apps 一. 基本介绍 1. 渐进式:适用所有浏览器,因为它是 ...
- a标签没有闭合引起自动插入很多a标签的问题
a标签中间没有内容的情况下,很容易忽略闭合 a标签一定要闭合,否则会在后面每个div后面插入同一个a标签 要以如下形式闭合: <div class="v5-index-containe ...
- const与指针、引用
const与指针类型 定义一个指针*p: const int* p = NULL; int const* p = NULL; int* const p = NULL; 上面两行定义完全等价,第三行则不 ...
- Python——捕获异常
一.什么是异常 """异常:错误,bug处理异常:尝试执行某句可能出现异常的语句, 若出错则用正确的代码去替代. try: 可能发生错误的代码except: 如果出现异常 ...
- python——异常(1),捕获特定异常
"""1.捕获指定异常,异常类型有多种2.若尝试执行的代码异常类型与捕获的异常类型不同则报错3.try下方一般只放一行代码,若有多行可能异常代码,则捕获一个异常类型后函数 ...
- Elasticsearch之增加和删除索引
增加索引 利用postMan工具发送restfulAPI添加索引库 请求方式为put代表添加 创建索引index时映射mapping 请求URL: 使用put发送http://localhost:92 ...
- mysql 表结构操作
alter table name : alter table table1 to table2;add column : alter table 表名 add column 列名 varchar(); ...