高斯消元弄了半天没弄对。。

#include<bits/stdc++.h>
using namespace std;
#define maxn 205
#define eps 1e-8
double A[maxn][maxn],x[maxn],ans[maxn];
int nxt[maxn],n;
#define a A
void guess(int n){ //行,列
for(int i=;i<n;i++){
if(a[i][i]==){//求主元的时候不能直接用swap进行交换
int id=;
for(int j=i+;j<=n;j++)
if(a[j][i]!=)
id=j;
for(int j=i;j<=n+;j++)
swap(a[i][j],a[id][j]);
}
for(int j=i+;j<=n;j++){//消下三角
double t=a[j][i]/a[i][i];
for(int k=i;k<=n+;k++)
a[j][k]-=(a[i][k]*t);
}
} for(int i=n;i>=;i--)
{
for(int j=i+;j<=n;j++)
a[i][n+]-=ans[j]*a[i][j];
ans[i]=a[i][n+]/a[i][i];
}
}
int main(){
int t;cin>>t;
for(int tt=;tt<=t;tt++){
int n;cin>>n;
memset(nxt,,sizeof nxt);
memset(A,,sizeof A);
for(int i=;i<n;i++){int x,y;cin>>x>>y;nxt[x]=y;}
for(int i=;i<;i++){//建立矩阵
if(nxt[i]){
A[i][i]=;
A[i][]=;
A[i][nxt[i]]=-;
}
else {
int k=;
for(int j=;i+j<= && j<=;j++){
k++;
A[i][i+j]=-;
}
A[i][i]=k,A[i][]=;
}
} A[][]=;A[][]=;
guess();
printf("Case %d: %.10lf\n",tt,ans[]);
}
return ;
}

高斯消元+期望dp——light1151的更多相关文章

  1. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元+期望dp)

    传送门 解题思路 设\(f(x)\)表示到\(x\)这个点的期望次数,那么转移方程为\(f(x)=\sum\frac{f(u)*(1 - \frac{p}{q})}{deg(u)}\),其中\(u\) ...

  2. Codeforces 446D - DZY Loves Games(高斯消元+期望 DP+矩阵快速幂)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题,%%% 首先考虑所有格子都是陷阱格的情况,那显然就是一个矩阵快速幂,具体来说,设 \(f_{i,j}\) 表示走了 \(i\) 步 ...

  3. HDU2262;Where is the canteen(高斯消元+期望)

    传送门 题意 给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望 分析 该题是一道高斯消元+期望的题目 难点在于构造矩阵,我们发现以下结论 设某点走到餐厅的期望为Ek 1 ...

  4. BZOJ 2707: [SDOI2012]走迷宫 拓扑+高斯消元+期望概率dp+Tarjan

    先Tarjan缩点 强连通分量里用高斯消元外面直接转移 注意删掉终点出边和拓扑 #include<cstdio> #include<cstring> #include<a ...

  5. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  6. CF113D 高斯消元、dp

    题目链接 https://codeforces.com/contest/113/problem/D 思路 \(k[i]=\frac{1-p[i]}{ru[i]}\) f[i][j]表示经过i和j的次数 ...

  7. LightOJ 1151 - Snakes and Ladders 高斯消元+概率DP

    首先来个期望的论文,讲的非常好,里面也提到了使用线性方程组求解,尤其适用于有向图的期望问题. 算法合集之<浅析竞赛中一类数学期望问题的解决方法> http://www.lightoj.co ...

  8. hdu4870 Rating (高斯消元或者dp)

    Rating Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  9. [luogu2973]driving out the piggies 驱逐猪猡【高斯消元+概率DP】

    看到题面的那一刻,我是绝望的ORZ 图论加概率期望加好像不沾边的高斯消元???我人直接傻掉 还没学过概率期望的我果断向题解屈服了(然后还是傻掉了两节课来找线性方程.. Description 奶牛们建 ...

随机推荐

  1. PAT_A1094#The Largest Generation

    Source: PAT A1094 The Largest Generation (25 分) Description: A family hierarchy is usually presented ...

  2. Vmware Centos7 配置静态 ip 和 使宿主机和虚拟机互相 ping 通

    NAT 方式1. 配置静态 ipVmware 安装 Centos7 可以参考 https://blog.csdn.net/guo_ridgepole/article/details/78973763 ...

  3. 【收集+】DDR5 vs DDR4

    Advantages of Migrating to DDR5 DDR5 is the next evolution in DRAM, bringing a robust list of new fe ...

  4. 18-MySQL-Ubuntu-数据表的查询-连接(七)

    students与classes表,两个表的连接字段是students.cls_id=classes.ID (1) 左连接:left join on 左边表全取,右边表取共有的,没有的为null se ...

  5. Deep Dive into Neo4j 3.5 Full Text Search

    In this blog we will go over the Full Text Search capabilities available in the latest major release ...

  6. HTML_页面注册案例

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. Apache Spark 2.2.0 中文文档 - Spark Streaming 编程指南

    Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Inp ...

  8. lds 文件说明

    主要符号说明 OUTPUT_FORMAT(bfdname) 指定输出可执行文件格式. OUTPUT_ARCH(bfdname) 指定输出可执行文件所运行 CPU 平台 ENTRY(symbol) 指定 ...

  9. 关于 第三方接口支付的时候 采用post提交的方式,有两种 一种是通过 curl来进行,一种是通过js当页面加载完后跳转

    这是第一种.通过javascript页面加载完后,对表单采用 post方式提交给 第三方接口----- echo <<<_END<!DOCTYPE html PUBLIC &q ...

  10. 有关axios的request与response拦截

    // http request 拦截器 axios.interceptors.request.use( config => { var token = localStorage.getItem( ...