BZOJ3473&&BZOJ3277串
BZOJ3473&&BZOJ3277串
题面
自己找去
HINT
对于所有串建立一个广义后缀自动机,对于每一个节点开一个set表示这个节点接受的子串在哪些串里出现过,然后在parent tree上做启发式合并,理论复杂度应该是\(nlog_{n}^2\)。
广义后缀自动机
这个广义后缀自动机在建立的时候和后缀自动机时是基本差不多的,就是在每加入一个新串的时候,把\(last=root\)就好了
如何找匹配大等于k次
首先因为每个节点的fa表示的子串都是现在这个节点的后缀,所以fa出现的次数一定\(>=\)当前节点出现的次数(这个东西可以感性认知进行证明),另外,如果一个子串出现次数小等于k,在这个子串后面加一个字符后它的出现次数也不可能大于k次
一句话题解
建立一个广义后缀自动机,然后在每个节点上开个set记录在几个串上出现,然后parent tree上启发式合并set,查询答案的时候不断往父亲节点跳,直到满足条件,然后\(\sum{node[u].len}\)
#include<bits/stdc++.h>
#include<set>
using namespace std;
const int maxn=200010;
inline int read(){
int w=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
w=(w<<3)+(w<<1)+ch-48;
ch=getchar();
}
return w*f;
}
int n,m;
bool debug;
set<int> s[maxn];
set<int>::iterator it;
struct SUFFIXAUTOMATON{
struct Node{
int len,fa;
map<int,int> ch;
}node[2000010];
int lst,root,tot;
inline void init(){
lst=root=tot=1;return;
}
inline void extend(int now,int id){
int p=lst;tot++;lst=tot;int np=tot;
node[np].len=node[p].len+1;s[np].insert(id);
while(p&&!node[p].ch[now]){
node[p].ch[now]=np;
p=node[p].fa;
}
if(!p) node[np].fa=1;
else{
int q=node[p].ch[now];
if(node[q].len==node[p].len+1){
node[np].fa=q;
}
else{
int nq=++tot;node[nq]=node[q];
node[nq].len=node[p].len+1;
node[q].fa=nq;node[np].fa=nq;
while(p&&node[p].ch[now]==q){
node[p].ch[now]=nq;
p=node[p].fa;
}
}
}
}
}SAM;
string ch[maxn];
int sum[maxn];
struct Edge{
int from,to,next;
}edge[maxn*6];
int cnt,head[maxn];
inline void addedge(int u,int v){
cnt++;
edge[cnt].from=u;
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt;
}
inline void dfs(int u){
for(int i=head[u];i;i=edge[i].next){
int v=edge[i].to;dfs(v);
if(s[u].size()<s[v].size()) swap(s[u],s[v]);
for(it=s[v].begin();it!=s[v].end();it++){
s[u].insert(*it);
}
}
sum[u]=s[u].size();
return;
}
int main(){
n=read();m=read();SAM.init();
for(int i=1;i<=n;i++){
cin>>ch[i];int len=ch[i].length();
for(int j=0;j<len;j++){
SAM.extend(ch[i][j]-'a'+1,i);
}
SAM.lst=1;
}
for(int i=1;i<=SAM.tot;i++){
if(SAM.node[i].fa) addedge(SAM.node[i].fa,i);
}
dfs(SAM.root);
if(m>n){
for(int i=1;i<=n;i++){
printf("0 ");
}
return 0;
}
for(int i=1;i<=n;i++){
long long ans=0;int u=SAM.root;int len=ch[i].length();
for(int j=0;j<len;j++){
u=SAM.node[u].ch[ch[i][j]-'a'+1];
while(sum[u]<m) u=SAM.node[u].fa;
ans+=SAM.node[u].len;
}
printf("%lld ",ans);
}
return 0;
}
你以为这就完了吗,naive
我在写最后那个统计答案的时候,想的做法长这样
for(int i=1;i<=n;i++){
long long ans=0;int u=SAM.root;int len=ch[i].length();
for(int j=0;j<len;j++){
u=SAM.node[u].ch[ch[i][j]-'a'+1];int p=u;
while(sum[p]<m) p=SAM.node[p].fa;
ans+=SAM.node[p].len;
}
printf("%lld ",ans);
}
我是想每次匹配完向上跳,但是在bzoj上它TLE了,然后我想了一个妙妙做法,并查集优化
inline int find(int x){
if(sum[x]>=m) return x;
else return f[x]=find(f[x]);
}
然后跑得飞快,就过了
BZOJ3473&&BZOJ3277串的更多相关文章
- [BZOJ3473][BZOJ3277]字符串
[BZOJ3473][BZOJ3277]字符串 试题描述 给定 \(n\) 个字符串,询问每个字符串有多少子串(不包括空串)是所有 \(n\) 个字符串中至少 \(k\) 个字符串的子串? 输入 第一 ...
- bzoj3473: 字符串 && bzoj3277串
3473: 字符串 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 121 Solved: 53[Submit][Status][Discuss] D ...
- bzoj3473字符串&bzoj3277串
题意:给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串.注意本质相同的子串多次出现算多次,如1 1 aaa这组数据答案为6,贡献1WA.代码里有些部分是为了 ...
- 【bzoj3277/bzoj3473】串/字符串 广义后缀自动机
题目描述 字符串是oi界常考的问题.现在给定你n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串(注意包括本身). 输入 第一行两个整数n,k.接下来n行每行一个 ...
- BZOJ3277 串 和 BZOJ3473 字符串
字符串 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串? 分析 参照自为风月马前卒和Candy?的题解. 广义后缀自动机不就是把很多串的SAM建到了一个S ...
- BZOJ3277 串(后缀数组+二分答案+主席树)
因为不会SAM,考虑SA.将所有串连起来并加分隔符,每次考虑计算以某个位置开始的子串有多少个合法. 对此首先二分答案,找到名次数组上的一个区间,那么只需要统计有多少个所给串在该区间内出现就可以了.这是 ...
- BZOJ3277——串
0.题意:给定你n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串(注意包括本身). 1.分析:这个题我问了吴大爷做法 首先建立后缀自动机,然后利用离线搞出每一个 ...
- bzoj3277 串 (后缀数组+二分答案+ST表)
常见操作:先把所有串都连到一起,但中间加上一个特殊的符号(不能在原串中/出现过)作为分割 由于全部的子串就等于所有后缀的所有前缀,那我们对于每一个后缀,去求一个最长的前缀,来满足这个前缀在至少K个原串 ...
- 【文文殿下】[BZOJ3277] 串
Description 字符串是oi界常考的问题.现在给定你n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中 至少k个字符串的子串(注意包括本身) Input 第一行两个整数n,k ...
随机推荐
- MongoDB入门(介绍、安装)
一.什么是MongoDB? MongoDB is a document database with the scalability and flexibility that you want with ...
- Enum, Generic and Templates
文 Akisann@CNblogs / zhaihj@Github 本篇文章同时发布在Github上:https://zhaihj.github.io/enum-generic-and-templat ...
- SpringBoot图文教程5—SpringBoot 中使用Aop
有天上飞的概念,就要有落地的实现 概念+代码实现是本文的特点,教程将涵盖完整的图文教程,代码案例 文章结尾配套自测面试题,学完技术自我测试更扎实 概念十遍不如代码一遍,朋友,希望你把文中所有的代码案例 ...
- tomcat solr服务无法搜索中文
把tomcat的配置文件修改一下就好了, vi server.xml <Connector port="8080" protocol="HTTP/1.1" ...
- ubuntu python及python IDLE 的安装
ubuntu下Python的安装和使用 文章参考出处:https://www.cnblogs.com/luckyalan/p/6703590.html ubuntu14.04 安装Python2.7: ...
- U盘制作macOS Sierra的启动盘
1.macOS Sierra的几种安装方式 *开机时按住command+option+r 进行联网在线安装.PS:在网速好的情况还行,但是如果网络差的时候,它会让你崩溃的. *使用光盘进行安装. *今 ...
- Linux系统WEB服务之Nginx基础入门
一.Nginxi简介 Nginx是什么?它是一个开源.高性能的WEB服务器软件和代理服务器软件,由俄罗斯人Igor Sysoev 开发实现.它的功能主要分三类,第一是它作为一个WEB服务软件使用:第二 ...
- python网络爬虫(二)requests库的基本介绍和使用
一.requests库的七个重要方法 (1)最常用方法:requests.get(url,params=None,**kwargs)//对应HTTP协议的GET()操作 (请求获得URL位置的资源) ...
- 手把手教你快速使用数据可视化BI软件创建互联网用户数据分析大屏
灯果数据可视化BI软件是新一代人工智能数据可视化大屏软件,内置丰富的大屏模板,可视化编辑操作,无需任何经验就可以创建属于你自己的大屏.大家可以在他们的官网下载软件. 本文以互联网用户数据分析大屏为 ...
- python实现自动点赞
1.思路通过pyautogui可以实现鼠标点击.滚动鼠标.截屏等操作.由此功能实现打开页面,进行点赞.aircv可以从大图像获得小图像的位置,利用pyautogui截屏得到的图片,可以在页面获取到每一 ...