RMQ


RMQ (Range Minimum Query),指求区间最小值。普通的求区间最小值的方法是暴力。

对于一个数列:

\[A_1,~ A_2,~ A_3,~ \cdots,~ A_n
\]

对于一个给定的区间\([l, ~r], ~1≤ l ≤r ≤ n\),\(\min \{A_l, A_{l + 1}, \cdots,A_r\}\)的计算就是RMQ问题。

此解法为\(\text{Sparse-Table}\)解法,简称\(ST\)表。

  • 预处理:预处理为对数据进行\(n\log n\)的时间复杂度的处理

    令\(d(i, j )\)为\(A_i, A_{i + 1}, \cdots, A_{i + 2^j - 1}\)的最小值,即\(d(i, j)\)的区间长度为\(2^j\),这里用到的是倍增的思想。

    则\(d(i, j - 1)\)为\(A_i, A_{1 + 1}, \cdots, A_{i + 2^{j - 1}-1}\)的最小值,区间长度为\(2^{j-1}\)

    同样地\(d(i + 2^{j - 1}, j - 1)\)表示的是\(A_{i + 2^{j-1}}, A_{i + 2^{j - 1} + 1}, \cdots, A_{i + 2^{j-1} + 2 ^{j - 1} - 1 = i + 2^j - 1}\)。

    所以显而易见:\(d(i, j)\)可以表示为:

    \[d(i,j) = \min \{d(i, j - 1), ~d(i + 2^{j - 1}, j - 1)\}
    \]

  • 查询:

    令\(k\)为满足\(2 ^ k ≤ R - L+ 1\)的最大整数,即\(k = \max\{t~|~2^t ≤ R - L + 1, t \in \mathbb Z^+\}\)。

    同样地:\(k =[ \log_2 (R-L + 1)]\),所以:\(\operatorname{Query}(L,R) = \min \{d(L,k),~d(R - 2^k + 1, k\}\)

    查询的时间复杂度为\(O(1)\)。

注意:由于每次\(pow(2,x)\)非常浪费时间,在计算机内部二进制可以表示为:\(1 << x\)。

代码:

namespace RMQ {

  	void init(int n) {
for (int i = 1; i <= n; i ++) d[i][0] = a[i];
for (int j = 1; (1 << j) <= n; j ++) {
for (int i = 1; i + (1 << j) - 1 <= n; i ++) {
d[i][j] = min(d[i][j - 1], d[i + (1 << (j - 1))][j - 1]);
} int query(int l, int r) {
int k = log2(r - l + 1);
return min(d[l][k], d[r - (1 << k) + 1][k]);
} }

注意init中的循环顺序不能颠倒,显而易见,\(j\)的值,即区间的长度,必须由小到大。

RMQ算法使用ST表实现的更多相关文章

  1. [poj3264]rmq算法学习(ST表)

    解题关键:rmq模板题,可以用st表,亦可用线段树等数据结构 log10和log2都可,这里用到了对数的换底公式 类似于区间dp,用到了倍增的思想 $F[i][j] = \min (F[i][j - ...

  2. [算法模板]ST表

    [算法模板]ST表 ST表和线段树一样,都能解决RMQ问题(范围最值查询-Range Minimum Query). 我们开一个数组数组\(f[maxn][maxn\log_2]\)来储存数据. 定义 ...

  3. 算法学习 - ST表 - 稀疏表 - 解决RMQ问题

    2017-08-26 21:44:45 writer:pprp RMQ问题就是区间最大最小值查询问题: 这个SparseTable算法构造一个表,F[i][j] 表示 区间[i, i + 2 ^ j ...

  4. 【算法学习笔记】RMQ问题与ST表

    \(0.\) RMQ问题 P1816 人话翻译 给定一个长度为\(n\)的数列\(a\),然后有\(m\)组询问,每次询问一个区间\([l,r]\)的最小值. 其中\(m,n\leq10^5\) \( ...

  5. 【模板】RMQ问题的ST表实现

    $RMQ$问题:给定一个长度为$N$的区间,$M$个询问,每次询问$[L_i,R_i]$这段区间元素的最大值/最小值. $RMQ$的高级写法一般有两种,即为线段树和$ST$表. 本文主要讲解一下$ST ...

  6. RMQ问题及ST表

    RMQ(Range Minimum/Maximum Query)问题指的是一类对于给定序列,要求支持查询某区间内的最大.最小值的问题.很显然,如果暴力预处理的话复杂度为 \(O(n^2)\),而此类问 ...

  7. RMQ算法 (ST算法)

     概述: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中 ...

  8. 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)

    题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...

  9. 【JZOJ5064】【GDOI2017第二轮模拟day2】友好城市 Kosarajo算法+bitset+ST表+分块

    题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么 ...

随机推荐

  1. spring的69个问题

    1.什么是Spring? Spring是一个开源的Java EE开发框架.Spring框架的核心功能可以应用在任何Java应用程序中,但对Java EE平台上的Web应用程序有更好的扩展性.Sprin ...

  2. 一个简单的Web服务器-支持Servlet请求

    上接 一个简单的Web服务器-支持静态资源请求,这个服务器可以处理静态资源的请求,那么如何处理Servlet请求的呢? 判断是否是Servlet请求 首先Web服务器需要判断当前请求是否是Servle ...

  3. maxmind geoip2使用笔记

    客户需求如下,nginx的访问日志中ip,匹配出对应的国家,省份和城市,然后给我了一个maxmind的连接参考. 查找资料,有做成hive udf的使用方式, 我们项目中一直使用 waterdrop ...

  4. ELK学习实验004:Elasticsearch的简单介绍和操作

    一 集群节点 Elstaicsearch的集群是由多个节点组成都,通过cluster.name设置集权名称,比能切用与区分其他的集群,每个节点通过node.name指定节点 在Elasticsearc ...

  5. JavaScript 构造树形结构的一种高效算法

    引言 我们经常会碰到树形数据结构,比如组织层级.省市县或者动植物分类等等数据.下面是一个树形结构的例子: 在实际应用中,比较常见的做法是将这些信息存储为下面的结构,特别是当存在1对多的父/子节点关系时 ...

  6. Hadoop以及组件介绍

    一.背景介绍 在接触过大数据相关项目的时候常常都会听到Hadoop这个东西,简单来说,他是一个用分布式计算来处理大数据的开源软件,下面包含了许多的组件和子项目,这篇文章将会介绍Hadoop的原理以及一 ...

  7. bootstrap4.4 Stretched link的使用

    Stretched link功能介绍:扩大可点击区域. 原理 .stretched-link::after { position: absolute; top: 0; right:0; bottom: ...

  8. spring boot集成spring-boot-starter-mail邮件功能

    前情提要 以目前IT系统功能来看,邮件功能是非常重要的一个功能.例如:找回密码.邮箱验证,邮件动态码.忘记密码,邮件营销等,都需要用到邮件功能.结合当下最流行的spring boot微服务,推出了sp ...

  9. 洛谷P3292 [SCOI2016]幸运数字 线性基+倍增

    P3292 [SCOI2016]幸运数字 传送门 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在 ...

  10. Django之Session与Cookie

    目录 一.cookie Cookie的由来 什么是Cookie Cookie的原理 查看Cookie cookie与session的作用 二.Django中操作Cookie 获取Cookie 设置Co ...