noip2017考前基础复习——数论数学
·最大公约数 gcd
辗转相除法 gcd(a,b)=gcd(b,a%b)
int gcd(int x,int y){
if(y==) return x;
return gcd(y,x%y);
}
效率O(logn)
·最小公倍数 lcm
可由最大公约数推来 lcm(a,b)=a*b/gcd(a,b)
int lcm(int x,int y){
int p=gcd(x,y);
return a*b/p;
}
效率O(logn)
·扩展欧几里得 extgcd
求ax+by=gcd(a,b)的整数对(x,y)
也可由gcd推过来
推导过程:
ax+by=gcd(a,b)=gcd(b,a%b)
假设求出 bx'+(a%b)y'=gcd(b,a%b)
那么整理可得 bx'+(a-(a/b)*b)y'=gcd(b,a%b)
ay'+b(x'-(a/b)*y')=gcd(b,a%b)=gcd(a,b)
故 x=y' y=x'-(a/b)*y'
int extgcd(int a,int b,int &x,int &y){ //返回值为gcd(a,b)
if(b==) {
x=;y=;
return a;
}
int d=extgcd(b,a%b,y,x);
y-=(a/b)*x;
return d;
}
可用于求同余方程、逆元
效率O(logn)
·素数筛
线性筛法,很好理解
由于每个合数都只会被筛掉一次,复杂度O(n)
void Get_Prime(int n){
p[]=p[]=;
cnt=;
for(int i=;i<=n;i++) p[i]=; //先标记2~n都为素数
for(int i=;i<=n;i++){
if(p[i]) prime[++cnt]=i; //i为素数
for(int j=;j<=cnt && (long long)i*prime[j]<=n;j++){
p[i*prime[j]]=; //每个合数都只被自己最小质因子筛掉
if(i%prime[j]==) break;
}
}
}
·欧拉函数 phi
求小于n与n互素的数的个数
phi[i]=i*(1-1/p1)*(1-1/p2)*(1-1/p3)…… 其中p1,p2,p3为i的质因数
可以在线性筛素数的同时求,复杂度O(n)
void get_phi(){
p[]=p[]=;cnt=;
for(int i=;i<=n;i++) p[i]=;
for(int i=;i<=n;i++){
if(p[i]==) phi[i]=i-,prime[++cnt]=i;
for(int j=;j<=cnt && (ll)i*prime[j]<=n;j++){
p[i*prime[j]]=;
if(i%prime[j]==) {
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
·快速幂
可以把幂想成一个二进制数来理解
int Power_Mod(int x,int y){ //求x的y次方
int ret=;
while(y){
if(y&) ret*=x;
x=x*x;
y>>=;
}
return ret;
}
效率O(logn)
·排列组合
1)加法原理:做一件事有n类做法,第n类有m[n]种做法,总做法数为m[1]+m[2]+...+m[n]
2)乘法原理:做一件事有n个步骤,第n个步骤有m[n]中做法,总做法数为m[1]*m[2]*...*m[n]
乘法原理可以说是加法原理的特殊情况
3)容斥原理 **这很重要**
例如:求gcd(1~m,1~n)=k的数对有多少
设满足条件的数对有f(k)个
则f(k)=(m/k)*(n/k)-f(2*k)-f(3*k)-f(4*k)-……从后往前递推计算即可
4)排列:A(m,n)=m!/(m-n)! (m>n)
5)组合:C(m,n)=m!/((m-n)!*n!) (m>n)
如何求组合数?
法一:C(m,n)=C(m,n-1)*(m-n+1)/n
法二:杨辉三角 C(m,n)=C(m-1,n)+C(m-1,n-1)
·概率与数学期望
1)概率:P(A)=m/n (可理解为事件A发生的频率)
互相独立的事件A与B 满足 P(A*B)=P(A)*P(B)
2)数学期望:随机变量X的数学期望EX是所有可能的值按照概率加权的和
期望的线性性质:E(X+Y)=E(X)+E(Y)
未完待续……
noip2017考前基础复习——数论数学的更多相关文章
- C语言基础复习总结
C语言基础复习总结 大一学的C++,不过后来一直没用,大多还给老师了,最近看传智李明杰老师的ios课程的C语言入门部分,用了一周,每晚上看大概两小时左右,效果真是顶一学期的课,也许是因为有开发经验吧, ...
- Java基础复习笔记基本排序算法
Java基础复习笔记基本排序算法 1. 排序 排序是一个历来都是很多算法家热衷的领域,到现在还有很多数学家兼计算机专家还在研究.而排序是计算机程序开发中常用的一种操作.为何需要排序呢.我们在所有的系统 ...
- 《CSS权威指南》基础复习+查漏补缺
前几天被朋友问到几个CSS问题,讲道理么,接触CSS是从大一开始的,也算有3年半了,总是觉得自己对css算是熟悉的了.然而还是被几个问题弄的"一脸懵逼"... 然后又是刚入职新公司 ...
- Java基础复习笔记系列 九 网络编程
Java基础复习笔记系列之 网络编程 学习资料参考: 1.http://www.icoolxue.com/ 2. 1.网络编程的基础概念. TCP/IP协议:Socket编程:IP地址. 中国和美国之 ...
- Java基础复习笔记系列 八 多线程编程
Java基础复习笔记系列之 多线程编程 参考地址: http://blog.csdn.net/xuweilinjijis/article/details/8878649 今天的故事,让我们从上面这个图 ...
- Java基础复习笔记系列 七 IO操作
Java基础复习笔记系列之 IO操作 我们说的出入,都是站在程序的角度来说的.FileInputStream是读入数据.?????? 1.流是什么东西? 这章的理解的关键是:形象思维.一个管道插入了一 ...
- Java基础复习笔记系列 五 常用类
Java基础复习笔记系列之 常用类 1.String类介绍. 首先看类所属的包:java.lang.String类. 再看它的构造方法: 2. String s1 = “hello”: String ...
- Java基础复习笔记系列 四 数组
Java基础复习笔记系列之 数组 1.数组初步介绍? Java中的数组是引用类型,不可以直接分配在栈上.不同于C(在Java中,除了基础数据类型外,所有的类型都是引用类型.) Java中的数组在申明时 ...
- JS基础 复习: Javascript的书写位置
爱创课堂JS基础 复习: Javascript的书写位置复习 js书写位置:body标签的最底部.实际工作中使用书写在head标签内一对script标签里.alert()弹出框.console.log ...
随机推荐
- H3C STP的作用
- Linux数据对齐
编写可移植代码而值得考虑的最后一个问题是如何存取不对齐的数据 -- 例如, 如何读取 一个存储于一个不是 4 字节倍数的地址的 4 字节值. i386 用户常常存取不对齐数据项, 但是不是所有的体系允 ...
- Linux 内核class_simple 接口
class_simple 接口意图是易于使用, 以至于没人会抱怨没有暴露至少一个包含设备的被 分配的号的属性. 使用这个接口只不过是一对函数调用, 没有通常的和 Linux 设备模型 关联的样板. 第 ...
- 数据库基础之Mysql
数据库的简介 数据库 数据库(database,DB)是指长期存储在计算机内的,有组织,可共享的数据的集合.数据库中的数据按一定的数学模型组织.描述和存储,具有较小的冗余,较高的数据独立性和易扩展性, ...
- Jmeter阶梯加压监听
巧用beanshell,做阶梯加压监听 1. 首先先添加阶梯加压线程组 bzm - Concurrency Thread Group 设置阶梯加压值,目标最大并发用户为80,加速步率时长为100秒, ...
- ASP.Net MVC SignalR的应用
ASP.Net MVC SignalR的应用 最近做的一个MVC项目有个模块是要使用即时通信实现弹幕效果.既要考虑通信的实时性也要考虑服务器性能和资源消耗,所幸项目对浏览器的版本没有要求.所以我最先想 ...
- k8s集群———etcd-ssl自签名证书
etcd集群master节点安装 ,自签名SSL证书 ##安装工具cfssl $ cat cfssl.sh curl -L https://pkg.cfssl.org/R1.2/cfssl_linux ...
- $UVA10559\ Blocks\ $区间$dp$
\(Des\) • 有一排数量为N的方块,每次可以把连续的相同颜色的区间消除,得到分数为 区间长度的平方,然后左右两边连在一起,问最大分数为多少. • n<=1 \(Sol\) 正解状态设得奇奇 ...
- ELK日志分析系统搭建
之前一段时间由于版本迭代任务紧,组内代码质量不尽如人意.接二连三的被测试提醒后台错误之后, 我们决定搭建一个后台日志分析系统, 经过几个方案比较后,选择的相对更简单的ELK方案. ELK 是Elast ...
- 「学习笔记」ST表
问题引入 先让我们看一个简单的问题,有N个元素,Q次操作,每次操作需要求出一段区间内的最大/小值. 这就是著名的RMQ问题. RMQ问题的解法有很多,如线段树.单调队列(某些情况下).ST表等.这里主 ...