·最大公约数 gcd

辗转相除法  gcd(a,b)=gcd(b,a%b)

 int gcd(int x,int y){
if(y==) return x;
return gcd(y,x%y);
}

效率O(logn)

·最小公倍数 lcm

可由最大公约数推来 lcm(a,b)=a*b/gcd(a,b)

 int lcm(int x,int y){
int p=gcd(x,y);
return a*b/p;
}

效率O(logn)

·扩展欧几里得 extgcd

求ax+by=gcd(a,b)的整数对(x,y)

也可由gcd推过来

推导过程:

ax+by=gcd(a,b)=gcd(b,a%b)

假设求出 bx'+(a%b)y'=gcd(b,a%b)

那么整理可得 bx'+(a-(a/b)*b)y'=gcd(b,a%b)

ay'+b(x'-(a/b)*y')=gcd(b,a%b)=gcd(a,b)

故 x=y'  y=x'-(a/b)*y'

 int extgcd(int a,int b,int &x,int &y){ //返回值为gcd(a,b)
if(b==) {
x=;y=;
return a;
}
int d=extgcd(b,a%b,y,x);
y-=(a/b)*x;
return d;
}

可用于求同余方程、逆元

效率O(logn)

·素数筛

线性筛法,很好理解

由于每个合数都只会被筛掉一次,复杂度O(n)

 void Get_Prime(int n){
p[]=p[]=;
cnt=;
for(int i=;i<=n;i++) p[i]=; //先标记2~n都为素数
for(int i=;i<=n;i++){
if(p[i]) prime[++cnt]=i; //i为素数
for(int j=;j<=cnt && (long long)i*prime[j]<=n;j++){
p[i*prime[j]]=; //每个合数都只被自己最小质因子筛掉
if(i%prime[j]==) break;
}
}
}

·欧拉函数 phi

求小于n与n互素的数的个数

phi[i]=i*(1-1/p1)*(1-1/p2)*(1-1/p3)……  其中p1,p2,p3为i的质因数

可以在线性筛素数的同时求,复杂度O(n)

 void get_phi(){
p[]=p[]=;cnt=;
for(int i=;i<=n;i++) p[i]=;
for(int i=;i<=n;i++){
if(p[i]==) phi[i]=i-,prime[++cnt]=i;
for(int j=;j<=cnt && (ll)i*prime[j]<=n;j++){
p[i*prime[j]]=;
if(i%prime[j]==) {
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}

·快速幂

可以把幂想成一个二进制数来理解

 int Power_Mod(int x,int y){  //求x的y次方
int ret=;
while(y){
if(y&) ret*=x;
x=x*x;
y>>=;
}
return ret;
}

效率O(logn)

·排列组合

1)加法原理:做一件事有n类做法,第n类有m[n]种做法,总做法数为m[1]+m[2]+...+m[n]

2)乘法原理:做一件事有n个步骤,第n个步骤有m[n]中做法,总做法数为m[1]*m[2]*...*m[n]

乘法原理可以说是加法原理的特殊情况

3)容斥原理   **这很重要**

例如:求gcd(1~m,1~n)=k的数对有多少

设满足条件的数对有f(k)个

则f(k)=(m/k)*(n/k)-f(2*k)-f(3*k)-f(4*k)-……从后往前递推计算即可

4)排列:A(m,n)=m!/(m-n)!  (m>n)

5)组合:C(m,n)=m!/((m-n)!*n!)  (m>n)

如何求组合数?

法一:C(m,n)=C(m,n-1)*(m-n+1)/n

法二:杨辉三角  C(m,n)=C(m-1,n)+C(m-1,n-1)

·概率与数学期望

1)概率:P(A)=m/n  (可理解为事件A发生的频率)

互相独立的事件A与B 满足 P(A*B)=P(A)*P(B)

2)数学期望:随机变量X的数学期望EX是所有可能的值按照概率加权的和

期望的线性性质:E(X+Y)=E(X)+E(Y)

未完待续……

noip2017考前基础复习——数论数学的更多相关文章

  1. C语言基础复习总结

    C语言基础复习总结 大一学的C++,不过后来一直没用,大多还给老师了,最近看传智李明杰老师的ios课程的C语言入门部分,用了一周,每晚上看大概两小时左右,效果真是顶一学期的课,也许是因为有开发经验吧, ...

  2. Java基础复习笔记基本排序算法

    Java基础复习笔记基本排序算法 1. 排序 排序是一个历来都是很多算法家热衷的领域,到现在还有很多数学家兼计算机专家还在研究.而排序是计算机程序开发中常用的一种操作.为何需要排序呢.我们在所有的系统 ...

  3. 《CSS权威指南》基础复习+查漏补缺

    前几天被朋友问到几个CSS问题,讲道理么,接触CSS是从大一开始的,也算有3年半了,总是觉得自己对css算是熟悉的了.然而还是被几个问题弄的"一脸懵逼"... 然后又是刚入职新公司 ...

  4. Java基础复习笔记系列 九 网络编程

    Java基础复习笔记系列之 网络编程 学习资料参考: 1.http://www.icoolxue.com/ 2. 1.网络编程的基础概念. TCP/IP协议:Socket编程:IP地址. 中国和美国之 ...

  5. Java基础复习笔记系列 八 多线程编程

    Java基础复习笔记系列之 多线程编程 参考地址: http://blog.csdn.net/xuweilinjijis/article/details/8878649 今天的故事,让我们从上面这个图 ...

  6. Java基础复习笔记系列 七 IO操作

    Java基础复习笔记系列之 IO操作 我们说的出入,都是站在程序的角度来说的.FileInputStream是读入数据.?????? 1.流是什么东西? 这章的理解的关键是:形象思维.一个管道插入了一 ...

  7. Java基础复习笔记系列 五 常用类

    Java基础复习笔记系列之 常用类 1.String类介绍. 首先看类所属的包:java.lang.String类. 再看它的构造方法: 2. String s1 = “hello”: String ...

  8. Java基础复习笔记系列 四 数组

    Java基础复习笔记系列之 数组 1.数组初步介绍? Java中的数组是引用类型,不可以直接分配在栈上.不同于C(在Java中,除了基础数据类型外,所有的类型都是引用类型.) Java中的数组在申明时 ...

  9. JS基础 复习: Javascript的书写位置

    爱创课堂JS基础 复习: Javascript的书写位置复习 js书写位置:body标签的最底部.实际工作中使用书写在head标签内一对script标签里.alert()弹出框.console.log ...

随机推荐

  1. 【t088】倒水

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] 一天辰辰买了N个容量可以认为是无限大的瓶子,开始时每个瓶子里有1升水.接着辰辰发现瓶子实在太多了,于是 ...

  2. .data()与.detach()的区别

    .data()和.detach()都可以获取Variable内部的Tensor,但.detach()更加安全 https://zhuanlan.zhihu.com/p/38475183

  3. 微信小程序map地图的一些使用注意事项

    1.小程序组件map,在微信7.0.4以上(不包括7.0.4)层级问题官方已作更新,可在map上随意添加任何标签使用z-index即可:微信7.0.4版本以下map组件层级默认是最高的,只能使用官方提 ...

  4. zabbix监控mysql脚本(仅供参考)

    mysql客户端添加 /etc/zabbix/zabbix_agentd.d.userparameter_mysql.conf UserParameter=mysql.version,mysql -V ...

  5. 【题解】CTSC1999家园(网络流)

    CTSC1999家园 建模方法类似我NOI2019网络同步赛我的T1写法[[题解]NOI2019Route](70分) 问题的焦点是:空间时间载具. 考虑如何击破时间限制,可以对每个点关于每个时刻建立 ...

  6. $[NOIp2017]$ 宝藏 状压$dp$

    \(Sol\) 觉得这里是个很巧妙的地方吖,就是记下当前扩展点集的最大深度,然后强制下一步扩展的点集都是最大深度+1.这样做在当前看可能会导致误算答案导致答案偏大,但是整个\(dp\)完成后一定可以得 ...

  7. VisitorPattern(访问者模式)-----Java/.Net

    在访问者模式(Visitor Pattern)中,我们使用了一个访问者类,它改变了元素类的执行算法.通过这种方式,元素的执行算法可以随着访问者改变而改变.这种类型的设计模式属于行为型模式.根据模式,元 ...

  8. MATLAB实例:PCA(主成成分分析)详解

    MATLAB实例:PCA(主成成分分析)详解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 主成成分分析 2. MATLAB解释 详细信息请看: ...

  9. 升级添加到现有iOS Xcode项目的Flutter

    如果你在2019年8月之前将Flutter添加到现有iOS项目,本文值得你一看. 在2019年7月30日,合并合并请求flutter / flutter#36793之前Flutter 1.8.4-pr ...

  10. 基于Netty和SpringBoot实现一个轻量级RPC框架-协议篇

    基于Netty和SpringBoot实现一个轻量级RPC框架-协议篇 前提 最近对网络编程方面比较有兴趣,在微服务实践上也用到了相对主流的RPC框架如Spring Cloud Gateway底层也切换 ...