Bugs Integrated, Inc.

给出一个\(n\times m\)的矩形网格图,给出其中K个障碍物的位置,求其中最多能摆的\(2\times 3\)的矩形的个数,\(n\leq 150,m\leq 10\)。

注意到m的数据范围很小,在这里进行进制压缩,而n进行对每一行的处理,设\(f[i][j]\)表示前i行第i行状态为j的方案数,注意到,\(2\times 3\)的矩形可以有3个长度,于是仅靠二进制是不够表现状态的,于是j是一个三进制数表示,其中2表示这个格子控制下面的2格,1表示1格,0表示没有,不难有\(2\times 3\)矩形为下图所示

2 2
1 1
0 0 1 1 1
0 0 0

不难得知最多只有\(3^{10}=59049\),显然是会超时的,于是考虑剪枝,首先预处理出每一行合法的用\(3\times 1,2\times 1\)的矩形填充的状态,这样的个数经过测试最多只有\(1278\)多个,所以这样枚举大概只有\(1278^2\times 150=244992600\),显然还是会超时,于是转移的时候不能枚举非法状态,于是用dfs转移继续剪枝,所以每个状态下远远不会有\(1278\)个,而经过测试,无棋子的棋盘上一个状态可以更新的状态只有326个,所以时间复杂度估计也就只有\(150\times 1278\times 326=62494200\),应该是可以通过的。

因为空间卡的太死,所以要滚动数组转移,具体实现看代码。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
using namespace std;
bool M[151][25];
int base[20],x,m,f,a[200][2000],
at[200],dp[2][60000],tot;
il void read(int&);il int max(int,int);
void dfs1(int,int),dfs2(int,int,int);
int main(){
int lsy;read(lsy),base[0]=1;
for(int i(1);i<=19;++i)base[i]=base[i-1]*3;
while(lsy--){
int n,K,l;read(n),read(m),read(K);
memset(M,1,sizeof(M)),memset(dp,-2,sizeof(dp));
memset(at,0,sizeof(at)),dp[0][0]=0;
for(int i(1),j,k;i<=K;++i)
read(j),read(k),M[j][k-1]&=false;
for(x=1;x<=n;++x)dfs1(0,0);++at[0];
for(x=0;x<n;++x){
for(l=1;l<=at[x];++l)
f=a[x][l],dfs2(0,0,0),
cout<<tot<<endl,tot&=0;
memset(dp[x&1],-2,sizeof(dp[x&1]));
}printf("%d\n",dp[n&1][0]);
}
return 0;
}
il int max(int a,int b){
return a>b?a:b;
}
void dfs2(int y,int e,int t){
if(y>=m)return (void)(dp[(x+1)&1][e]=
max(dp[(x+1)&1][e],dp[x&1][f]+t));
if(f/base[y]%3==2){
if(M[x+1][y]&&M[x+1][y+1])
dfs2(y+2,e+base[y]+base[y+1],t);
return;
}
else if(f/base[y]%3==1){
while(f/base[y]%3==1&&y<m)
if(M[x+1][y])++y;
else return;
dfs2(y,e,t);return;
}
else{
if(M[x+1][y]&&M[x+1][y+1]&&y+1<m)
if(!(f/base[y+1]%3))
dfs2(y+2,e+base[y]*2+base[y+1]*2,t+1);
if(M[x+1][y]&&M[x+1][y+1]&&M[x+1][y+2]&&y+2<m)
if(!(f/base[y+1]%3)&&!(f/base[y+2]%3))
dfs2(y+3,e+base[y]+base[y+1]+base[y+2],t+1);
}dfs2(y+1,e,t),++tot;
}
void dfs1(int y,int e){
if(y==m)return (void)(a[x][++at[x]]=e);
if(M[x][y]&&M[x][y+1]&&y+1<m){
dfs1(y+2,e+base[y]+base[y+1]),
dfs1(y+2,e+base[y]*2+base[y+1]*2);
if(M[x][y+2]&&y+2<m)
dfs1(y+3,e+base[y]+base[y+1]+base[y+2]);
}dfs1(y+1,e);
}
il void read(int &x){
x&=0;ri char c;while(c=getchar(),c<'0'||c>'9');
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
}

Bugs Integrated, Inc.的更多相关文章

  1. POJ 1038 Bugs Integrated, Inc.(DFS + 三进制状压 + 滚动数组 思维)题解

    题意:n*m方格,有些格子有黑点,问你最多裁处几张2 * 3(3 * 2)的无黑点格子. 思路:我们放置2 * 3格子时可以把状态压缩到三进制: 关于状压:POJ-1038 Bugs Integrat ...

  2. POJ1038 Bugs Integrated, Inc.

    题目来源:http://poj.org/problem?id=1038 题目大意: 有一家芯片公司要在一块N*M的板子上嵌入芯片,其中1<=N<=150, 1<=M<=10,但 ...

  3. 【CEOI2002】【Poj 1038】Bugs Integrated, Inc.

    http://poj.org/problem?id=1038 发一下中文题面(今天考试直接被改了): 生记茶餐厅由于受杀人事件的影响,生意日渐冷清,不得不暂时歇业.四喜赋闲在家,整天抱着零食看电视,在 ...

  4. POJ 1038 Bugs Integrated, Inc.

    AC通道 神坑的一道题,写了三遍. 两点半开始写的, 第一遍是直接维护两行的二进制.理论上是没问题的,看POJ discuss 上也有人实现了,但是我敲完后准备开始调了.然后就莫名其妙的以为会超时,就 ...

  5. POJ1038 - Bugs Integrated, Inc.(状态压缩DP)

    题目大意 要求你在N*M大小的主板上嵌入2*3大小的芯片,不能够在损坏的格子放置,问最多能够嵌入多少块芯片? 题解 妈蛋,这道题折腾了好久,黑书上的讲解看了好几遍才稍微有点眉目(智商捉急),接着看了网 ...

  6. POJ1038 Bugs Integrated, Inc 状压DP+优化

    (1) 最简单的4^10*N的枚举(理论上20%) (2) 优化优化200^3*N的枚举(理论上至少50%) (3) Dfs优化状压dp O(我不知道,反正过不了,需要再优化)(理论上80%) (4) ...

  7. poj1038 Bugs Integrated,Inc. (状压dp)

    题意:N*M的矩阵,矩阵中有一些坏格子,要在好格子里铺2*3或3*2的地砖,问最多能铺多少个. 我的方法好像和网上流传的方法不太一样...不管了.... 由数据范围很容易想到状压dp 我们设某个状态的 ...

  8. POJ-1038 Bugs Integrated, Inc. (状压+滚动数组+深搜 的动态规划)

    本题的题眼很明显,N (1 <= N <= 150), M (1 <= M <= 10),摆明了是想让你用状态压缩dp. 整个思路如下:由于要填2*3或者3*2的芯片,那么就要 ...

  9. POJ 1038 Bugs Integrated, Inc. ——状压DP

    状态压缩一下当前各格子以及上面总共放了几块,只有012三种情况,直接三进制保存即可. 然后转移的时候用搜索找出所有的状态进行转移. #include <map> #include < ...

随机推荐

  1. java.io.FileNotFoundException: [WEB-INF/spring-servlet.xml] cannot be opened because it does not exist

    今天启动web 项目出现错误提示: java.io.FileNotFoundException: [WEB-INF/spring-servlet.xml] cannot be opened becau ...

  2. CentOS 7 用 yum 安装 Nginx

    在 CentOS 7 中,直接使用 yum 安装 Nignx 会提示无下载源.因此,需要添加 Nginx 的下载源到 yum: sudo rpm -Uvh http://nginx.org/packa ...

  3. 修改css样式+jq中的效果+属性操作+元素操作

    :checked    选框选中的 一.修改css样式: 1.参数只写属性名,则返回属性值 $(this).css( ' color ');   //300px 2.参数是属性名,属性值,逗号分隔,是 ...

  4. UIPageViewController看这篇就够了

    先说初始化 - (UIPageViewController *)PageViewController{ if(!_PageViewController){ //书脊位置,只有在UIPageViewCo ...

  5. Berry 指令设计

    Berry 脚本源代码需要被编译为字节码指令流才能被 Berry 虚拟机执行.本文将详细地讲解 Berry 字节码指令(下面简称指令)的设计和实现.为了达到这个目的,本文由 3 部分构成:第 1 小节 ...

  6. selenium提取不了标签文本

    1.举个例子:selenium使用driver.find_element_by_xpath().text 提取不到标签文本?? 如果我们提取的元素文本为空时,而不是我们想要的文本时,这时可能就是因为你 ...

  7. 打造“云边一体化”,时序时空数据库TSDB技术原理深度解密

    本文选自云栖大会下一代云数据库分析专场讲师自修的演讲——<TSDB云边一体化时序时空数据库技术揭秘> 自修 —— 阿里云智能数据库产品事业部高级专家 认识TSDB 第一代时序时空数据处理工 ...

  8. php mysql函数库总结(一)

    连接mysqlresource mysql_connect(host,username,password);设置交互字符集bool mysql_set_charset("utf8|gbk&q ...

  9. 最大字段和--GSS1 MUSHROOM ORZ

    过于naive了= =作为一个知识点总结一下算了.主要就是合并.对于一个区间的最大字段和,可以分别事下面的两个区间的子段和,或者事左边的右边加右边的左边.然后搞一下 = = #include < ...

  10. Oracle分页:工作记录

    Oracle分页:传入值为List<String> . Mybatis XXXMapper.xml SELECT * FROM ( SELECT ROWNUM rn, t1.cardnum ...