以下讲解内容出自《计算机组成原理(第三版)》(清华大学出版社)
大二学生一只,我的计组老师比较划水,不讲公式推导,所以最近自己研究了下Booth算法的公式推导,希望能让同样在研究Booth算法的小伙伴少花点时间。
 

下面将对上图公式方框中部分进行讲解。

 
首先要摆明一个公式。
**公式X**: - [B]补 = [-B]补 ; [B]补 = - [-B]补
 
意思是 一个数A的补码,等于该补码的机器负数 (机器负数的定义可以见书P85 简单理解一个数Y的机器负数 = [-Y]补)
前加负号的数
比如:
 01100 (12) - [00101(5)]补 = 01100(12) + 10101(-5的补码) = (01100 + 11011)(补码) = 00111 (7的原码和补码)
 
解释1框框:
因为乘数为小数,0.ABCD = A*(2^(-1)) +  B*(2^(-2)) + C*(2^(-3)) + D*(2^(-4))。就和1111 = 1 + 2 + 4 + 8 一个道理。
 
解释2框框内容:
根据公式X, 第二行的 + [-X] 补 * Ys = - [X]补 * Ys
由此得第三行的 -Ys * [X]补
 
解释3框框中的图:
这个框中的意思是一个二进制小数,向左移动一位(乘2),再减去原来的自己,还是等于自己。利用了二进制 高一位 是 低一位两倍的关系。
看上图中,Y1本来是表示Y1*(2^(-1))次方的大小的 ,但是在3框框中却变成了 1 * Y1(左移了一位), 其他位以此类推。并且减去了表示原来的自己的 Y1*(2^(-1)),结果还是 Y1*(2^(-1)),所以等于原来的自己,其他位以此类推。
 
下图的Zn是部分积,并且把部分积从原式中拆解出来后,可以根据这些拆解式分析出Booth算法一位乘法补码运算时的过程
 
 

蓝色框框里的 Y(n+1) - Yn 就是乘数的末两位了(被乘数移位之后),当 Y(n+1) - Yn  = - 1 的时候,

(Y(n+1) - Yn)* [X]补 * 2^(-n) =  (-1) * [X]补 * 2^(-n) = + [-X]补码 * 2^(-n) , X是被乘数,这也可以解释为什么Booth里末两位为10时,要加[-X]补 (因为 Y(n+1) = 0, Yn = 1)。 为什么 Y(n+1) - Yn  = 1 (末两位01)的时候 要加[X]补。而Y(n+1) - Yn  = 0 (末两位为11 或者 00)的时候什么都不做(1 - 1 = 0, 0 - 0 = 0)。而 2^(-n) 中的n则是当前部分积相对原来开始时右移的位数,所以(Y(n+1) - Yn)* [X]补 * 2^(-n) 解释起来就是 (Y(n+1) - Yn) 根据乘数末两位来确定 -1,0 , 1。也就是加还是减或者什么都不做。[X]补是原来被乘数的补码,因为乘数Y是1和0组成的,所以整个乘法X*Y的过程就是在决定要不要加X,或者不加的过程,当然补码运算比较特殊,还有减去操作。而2^(-n)的n则是表示当前乘法部分积移动的位数。
 
下图是部分积拆解结果和运算过程的对应关系分析
 

 
 
 
 
 
 
 
 
 

Booth算法: 补码一位乘法公式推导与解析的更多相关文章

  1. 补码一位乘法 Booth算法 Java简易实现

    本文链接:https://www.cnblogs.com/xiaohu12138/p/11955619.html. 转载,请说明出处. 本程序为简易实现补码一位乘法,若代码中存在错误,可指出,本人会不 ...

  2. 补码一位乘法(Booth算法,C语言实现)

    补码一位乘法 首先了解下什么是补码? 补码概念的理解,需要先从“模”的概念开始. 我们可以把模理解为一个容器的容量.当超出这个 容量时,会自动溢出.如:我们最常见到的时钟,其容量 是 12,过了 12 ...

  3. BOOTH 算法的简单理解

    学习FPGA时,对于乘法的运算,尤其是对于有符号的乘法运算,也许最熟悉不过的就是 BOOTH算法了. 这里讲解一下BOOTH算法的计算过程,方便大家对BOOTH的理解.        上图是BOOTH ...

  4. Booth算法

    Booth算法 算法描述(载自维基百科) 对于N位乘数Y,布斯算法检查其2的补码形式的最后一位和一个隐含的低位,命名为y-1,初始值为0.对于yi, i = 0, 1, ..., N - 1,考察yi ...

  5. 「C语言」原码反码补码与位运算

    尽管能查到各种文献,亲自归纳出自己的体系还是更能加深对该知识的理解.     本篇文章便是在结合百度百科有关原码.反码.补码和位运算的介绍并深度借鉴了张子秋和Liquor相关文章后整理而出.   目录 ...

  6. java原码反码补码以及位运算

    原码, 反码, 补码的基础概念和计算方法. 对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式. 1. 原码 原码就是符号位加上真值的绝对值, 即 ...

  7. 【老鸟学算法】大整数乘法——算法思想及java实现

    算法课有这么一节,专门介绍分治法的,上机实验课就是要代码实现大整数乘法.想当年比较混,没做出来,颇感遗憾,今天就把这债还了吧! 大整数乘法,就是乘法的两个乘数比较大,最后结果超过了整型甚至长整型的最大 ...

  8. JAVA:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题(5)

    一.二进制,位运算,移位运算 1.二进制 对于原码, 反码, 补码而言, 需要注意以下几点: (1).Java中没有无符号数, 换言之, Java中的数都是有符号的; (2).二进制的最高位是符号位, ...

  9. Java学习第五篇:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题

    一.二进制,位运算,移位运算 1.二进制 对于原码, 反码, 补码而言, 需要注意以下几点: (1).Java中没有无符号数, 换言之, Java中的数都是有符号的; (2).二进制的最高位是符号位, ...

随机推荐

  1. guava的简单使用

    引入依赖 <dependency> <groupId>com.fasterxml.jackson.datatype</groupId> <artifactId ...

  2. Mac升级后如何查看自己的网络端口

    OS X 10.9 下面 网络实用工具 从实用工具目录里消失了,可能这个程序用的人太少就取消了吧.但是对于做互联网的人还是有点用的. 参考http://www.mamicode.com/info-de ...

  3. echarts 如何去掉折线上的小圆点

    series:[{ symbol:none; //去掉折线上的小圆点 type:line; name:seriesName; data:seriesData }]

  4. [C语言学习笔记四]变量与系统的交互

    使用 const 创建常量和使用 volatie 优化变量 C语言中使用 const 定义常量. 例如: const INT a = 10; 此处如果添加a = 20;,编辑器则会报错,因为此处 a ...

  5. 2.springboot------微服务

    什么是微服务? 微服务是一种架构风格,它要求我们在开发一个应用的时候,这个应用必须构建成一系列小服务的组合:可以通过http的方式进行互通.要说微服务架构,先得说说过去我们的单体应用架构. 单体应用架 ...

  6. 题解【洛谷P1514】[NOIP2010]引水入城

    题目描述 在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠.该国的行政区划十分特殊,刚好构成一个 \(N\) 行 \(M\) 列的矩形,如上图所示,其中每个格子都代表一座城市,每座城市 ...

  7. Iris项目结构

  8. codeforces E. The Contest(最长上升子序列)

    题目链接:https://codeforces.com/contest/1257/problem/E 题意:给三个序列k1,k2,k3,每个序列有一堆数,k1是前缀,k3是后缀,k2是中间,现可以从任 ...

  9. Redis01——Redis介绍

    1.NoSQL数据库概述 NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库. NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式 ...

  10. [Leetcode] 攻略计划

    在同龄人中我的逻辑思维应该是中下水平,要好好练练.而训练的内容之一,就是解决信息问题,锻炼建模能力. 今天先从队列和栈开始,这两种数据结构大概是计算机和许多程序中最重要的组成部分了.