求直线交点还是要推一个公式的。。

见博客https://blog.csdn.net/u013050857/article/details/40923789

还要学一下向量的定点比分法

另外poj精度好像卡的厉害,zoj1280就没啥问题

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; const double esp = 1e-;
const double inf = 1e20;
const double pi = acos(-1.0);
const int maxp = ; int sgn(double x){
if(fabs(x) < esp)return ;
if(x < )return -;
else return ;
}
inline double sqr(double x){return x*x;} struct Point{
double x,y;
Point(){}
Point(double _x,double _y):x(_x),y(_y){}
void input(){scanf("%lf%lf",&x,&y);}
void output(){printf("%.2lf %.2lf\n",x,y);}
bool operator==(Point b)const {
return sgn(x-b.x)== && sgn(y-b.y)==;
}
bool operator < (Point b)const {//判左下
if( sgn(x-b.x)== ) //横坐标相等
return sgn(y-b.y)<;
return x<b.x;
}
Point operator - (const Point &b)const {
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const {
return x*b.y-y*b.x;
}
double operator *(const Point &b)const {
return x*b.x+y*b.y;
}
double len(){
return hypot(x,y);
}
double len2(){
return x*x+y*y;
}
double distance(Point p){
return hypot(x-p.x,y-p.y);
}
Point operator +(const Point &b)const {
return Point(x+b.x,y+b.y);
}
Point operator *(const double &k)const {
return Point(x*k,y*k);
}
Point operator /(const double &k)const {
return Point(x/k,y/k);
}
double rad(Point a,Point b){
Point p=*this;
return fabs(atan2( fabs((a-p)^(b-p)),(a-p)*(b-p) ));
}
Point trunc(double r){
double l=len();
if(!sgn(l))return *this;
r/=l;
return Point(x*r,y*r);
}
Point rotleft(){
return Point(-y,x);
}
Point rotright(){
return Point(y,-x);
}
Point rotate(Point p,double angle){
Point v=(*this)-p;
double c=cos(angle),s=sin(angle);
return Point(p.x+v.x*c-v.y*s, p.y+v.x*s+v.y*c);
}
};
struct Line{
Point s,e;
Line(){}
Line(Point s,Point e):s(s),e(e){}
bool operator ==(Line v){
return (s==v.s) && (e==v.e);
}
Line(Point p,double angle){
s=p;
if(sgn(angle-pi/)==)
e=s+Point(,);
else e=s+Point(,tan(angle));
}
Line(double a,double b,double c){
if(sgn(a)==){
s=Point(,-c/b);
e=Point(,-c/b);
}
else if(sgn(b)==){
s=Point(-c/a,);
e=Point(-c/a,);
}
else {
s=Point(,-c/b);
e=Point(,(-c-a)/b);
}
}
void input(){
s.input();
e.input();
}
void adjust(){
if(e<s)swap(e,s);
}
double length(){
return s.distance(e);
}
double angle(){
double k=atan2(e.y-s.y,e.x-s.x);
if(sgn(k)<)k+=pi;
if(sgn(k-pi)==) k-=pi;
return k;
}
int relation(Point p){
int c=sgn((p-s)^(e-s));
if(c<)return ;
else if(c>)return ;
else return ;
}
bool pointonseg(Point p){
return sgn((p-s)^(e-s))== && sgn((p-s)*(p-e))<=;
}
bool parallel(Line v){
return sgn((e-s)^(v.e-v.s))==;
}
int segcrossseg(Line v){
int d1=sgn((e-s)^(v.s-s));
int d2=sgn((e-s)^(v.e-s));
int d3=sgn((v.e-v.s)^(s-v.s));
int d4=sgn((v.e-v.s)^(e-v.s));
if( (d1^d2)==- && (d3^d4)==-) return ;
return (d1== && sgn((v.s-s)*(v.s-e))<=) ||
(d2== && sgn((v.e-s)*(v.e-e))<=) ||
(d3== && sgn((s-v.s)^(s-v.e))<=) ||
(d4== && sgn((e-v.s)^(e-v.e))<=);
}
int linecrossseg(Line v){
int d1=sgn((e-s)^(v.s-s));
int d2=sgn((e-s)^(v.e-s));
//cout<<(d1^d2)<<'\n';
if((d1^d2)==-)return ;
return d1== || d2==;
}
int linecrossline(Line v){
if((*this).parallel(v))
return v.relation(s)==;
return ;
}
Point crosspoint(Line v){
double a1=(v.e-v.s)^(s-v.s);//面积
double a2=(v.e-v.s)^(e-v.s);
return Point((s.x*a2-e.x*a1)/(a2-a1),
(s.y*a2-e.y*a1)/(a2-a1));
}
double dispointtoline(Point p){
return fabs((p-s)^(e-s))/length();
}
double dispointtoseg(Point p){
if(sgn((p-s)*(e-s))< || sgn((p-e)*(s-e))<)
return min(p.distance(s),p.distance(e));
return dispointtoline(p);
}
double dissegtoseg(Line v){
return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),
min(v.dispointtoline(s),v.dispointtoline(e)));
}
Point lineprog(Point p){//s+vt
return s+( ((e-s)*((e-s)*(p-s)))/(e-s).len2() );
}
Point symmetrypoint(Point p){
Point q=lineprog(p);
return Point(*q.x-p.x,*q.y-p.y);
}
}; //判两直线是否相交
int main(){
int t;cin>>t;
puts("INTERSECTING LINES OUTPUT");
for(int tt=;tt<=t;tt++){
double x1,y1,x2,y2;
cin>>x1>>y1>>x2>>y2;
Line line1=Line(Point(x1,y1),Point(x2,y2));
cin>>x1>>y1>>x2>>y2;
Line line2=Line(Point(x1,y1),Point(x2,y2));
if(line1.linecrossline(line2)==)
puts("NONE");
else if(line1.linecrossline(line2)==)
puts("LINE");
else if(line1.linecrossline(line2)==){
Point p=line1.crosspoint(line2);
printf("POINT %.2lf %.2lf\n",p.x,p.y);
}
}
puts("END OF OUTPUT");
}

计算几何——直线交点poj1269的更多相关文章

  1. UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)

    Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...

  2. hdu 2528:Area(计算几何,求线段与直线交点 + 求多边形面积)

    Area Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  3. UVA 11178 Morley's Theorem(旋转+直线交点)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...

  4. POJ_1269_Intersecting Lines_求直线交点

    POJ_1269_Intersecting Lines_求直线交点 Description We all know that a pair of distinct points on a plane ...

  5. ZOJ 1280 Interesting Lines | 求两直线交点

    原题: 求两直线交点 思路借鉴于:http://blog.csdn.net/zxy_snow/article/details/6341282 感谢大佬 #include<cstdio> # ...

  6. 2017 ACM-ICPC乌鲁木齐网络赛 B. Out-out-control cars(计算几何 直线相交)

    题目描述 Two out-of-control cars crashed within about a half-hour Wednesday afternoon on Deer Park Avenu ...

  7. hdu 1086 You can Solve a Geometry Problem too 求n条直线交点的个数

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  8. poj1269(直线交点)

    传送门:Intersecting Lines 题意:给出N组直线,每组2条直线,求出直线是否相交.如果共线则输出LINE,相交则输入点坐标,否则输出NONE. 分析:模板裸题,直接上模板... #in ...

  9. poj1269计算几何直线和直线的关系

    We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a p ...

随机推荐

  1. 三.Python数据类型详述

    Python第三节数据类型详述 一.多变量赋值 python允许多变量赋值 多变量赋相同的值a = b = c = 1 多变量赋不同的值a, b, c = 1, 2, "fuckyou&qu ...

  2. JavaScript中的面向对象编程,详解原型对象及prototype,constructor,proto,内含面向对象编程详细案例(烟花案例)

    面向对象编程:   面向:以什么为主,基于什么模式 对象:由键值对组成,可以用来描述事物,存储数据的一种数据格式 编程:使用代码解决需求   面向过程编程:         按照我们分析好的步骤,按步 ...

  3. No package docker-io available

    新手centos6.8安装docker时从遇到No package docker-io available开始的各种不小心的坑... 新安装了CentOS6.8,准备安装docker,执行命令 yum ...

  4. docker学习---搭建Docker LAMP环境

    1.环境 系统版本:CentOS Linux release 7.4.1708 docker版本:docker-ce-18.09 主机IP:192.168.121.121 2.载入MySQL和PHP镜 ...

  5. Shell脚本 全局变量、局部变量

    在不同的作用域中,同名的变量不会相互干涉,就好像 A 班有个叫小明的同学,B 班也有个叫小明的同学,虽然他们都叫小明(对应于变量名),但是由于所在的班级(对应于作用域)不同,所以不会造成混乱.但是如果 ...

  6. python系统模块

    Python中大多数系统接口都集中在两个模块:sys和os.这么说有点过于简单化 还有一些其他的表转模块也属于这个领域他们包括: glob 用于文件名的扩展 socket 用于网络连接和进程间通信(I ...

  7. Go 动态类型声明

    Go 动态类型声明 package main import "fmt" func main() { var x float64 = 20.0 y := 42 fmt.Println ...

  8. Intervals POJ - 3680

    传送门 给定数轴上n个带权区间$[l_i,r_i]$,权值为$w_i$ 选出一些区间使权值和最大,且每个点被覆盖次数不超过k次. 离散+拆点,最大费用可行流(跑到费用为负为止) 第一部分点按下标串起来 ...

  9. NX二次开发-UFUN将工程图转成CGM和PDF文件UF_CGM_export_cgm

    文章转载自唐康林NX二次开发论坛,原文出处: http://www.nxopen.cn/thread-126-1-1.html 刚才有同学问到这个问题,如果是用NXOpen来做,直接录制一下就可以了: ...

  10. NX二次开发-UFUN所有对象类型的宏定义

    /**************************************************************************** Copyright (c) 2010 Sie ...