@description@

一个长度为 n 的 01 序列是好的,当且仅当该序列任意两个 0 不相邻。

求从 [l, r] 中选出 k 个长度相等的 01 序列的方案数。

1 ≤ k ≤ 200, 1 ≤ l ≤ r ≤ 10^18。

原题戳这里

@solution@

定义 f[i] 表示合法 01 串数量,对最后一个是 1 还是 0 进行讨论得到 f[i] = f[i-1] + f[i-2]。

递推式有斐波那契数列形式,但注意 f[1] = 2 所以不完全是斐波那契,不过可以通过移位变成斐波那契。

以下都把它当作斐波那契数列来解决。

则问题相当于问 \(\sum_{i=l}^{r}C_{f_i}^k = \sum_{i=0}^{r}C_{f_i}^k - \sum_{i=0}^{l-1}C_{f_i}^k\)。

可以通过第一类斯特林数化成 \(\sum_{i=0}^{n}C_{f_i}^k = \frac{1}{k!}\sum_{i=0}^{n}(\sum_{j=0}^{k}S_{k}^{j}*f_{i}^j*(-1)^{k-j})\)。

问题可以等价于求 \(\sum_{i=0}^{n}f_{i}^p\)。当 p = 1, 2 的时候都可以搜到相应的式子。是否 p 增大也有相应的式子呢?

除了把递推式写成矩阵以外,斐波那契还有一个常见解决方法:通项公式。众所周知,斐波那契的通项公式可以写作 \(f[i] = a*A^i + b*B^i\)。

注意通项公式中含有 \(\sqrt{5}\),而该模数下 5 没有二次剩余。所以需要类似复数,将数存成 \((a + b*\sqrt{5})\) 的形式。

然后直接把通项公式往里面代:

\[\sum_{i=0}^{n}f_{i}^p = \sum_{i=0}^{n}(a*A^i + b*B^i)^p
\\ = \sum_{i=0}^{n}\sum_{j=0}^{p}C_p^j*(a*A^i)^j*(b*B^j)^{p-j}
\\ = \sum_{j=0}^{p}C_p^j*a^j*b^{p-j}\sum_{i=0}^{n}(A^j*B^{p-j})^i\]

等比数列求和解后面的式子即可。

最后复杂度 O(k^2logA)(还有等比数列快速幂的复杂度)。

@accepted code@

#include <cstdio>
#include <algorithm>
using namespace std; typedef long long ll; const int MAXK = 200;
const int MOD = int(1E9) + 7; struct mint{
int x, y;
mint(int _x=0, int _y=0) : x(_x), y(_y) {}
friend mint operator + (mint a, mint b) {
int x = (a.x + b.x >= MOD ? a.x + b.x - MOD : a.x + b.x);
int y = (a.y + b.y >= MOD ? a.y + b.y - MOD : a.y + b.y);
return mint(x, y);
}
friend mint operator - (mint a, mint b) {
int x = (a.x - b.x < 0 ? a.x - b.x + MOD : a.x - b.x);
int y = (a.y - b.y < 0 ? a.y - b.y + MOD : a.y - b.y);
return mint(x, y);
}
friend mint operator * (mint a, mint b) {
int x = (1LL*a.x*b.x + 5LL*a.y*b.y) % MOD;
int y = (1LL*a.x*b.y + 1LL*a.y*b.x) % MOD;
return mint(x, y);
}
friend mint mpow(mint a, ll k) {
mint r = 1;
while( k ) {
if( k & 1 ) r = r * a;
a = a * a;
k >>= 1;
}
return r;
}
friend mint operator / (mint a, mint b) {
mint p = a * mint(b.x, (MOD - b.y)%MOD), q = mint((1LL*b.x*b.x%MOD + MOD - 5LL*b.y*b.y%MOD)%MOD, 0);
return p * mpow(q, MOD-2);
}
}s[MAXK + 5][MAXK + 5], c[MAXK + 5][MAXK + 5]; const mint A1 = 1/mint(0,1);
const mint A2 = (1 + mint(0,1))/2;
const mint B1 = 1/mint(0,MOD-1);
const mint B2 = (1 - mint(0,1))/2; void init() {
for(int i=0;i<=MAXK;i++) {
c[i][0] = 1;
for(int j=1;j<=i;j++)
c[i][j] = c[i-1][j] + c[i-1][j-1];
}
for(int i=0;i<=MAXK;i++)
for(int j=0;j<=i;j++)
c[i][j] = c[i][j] * mpow(A1, j) * mpow(B1, i-j);
s[0][0] = 1;
for(int i=1;i<=MAXK;i++)
for(int j=1;j<=i;j++)
s[i][j] = s[i-1][j-1] + (i-1)*s[i-1][j];
for(int i=0;i<=MAXK;i++)
for(int j=0;j<=MAXK;j++)
if( (i + j) & 1 ) s[i][j] = 0 - s[i][j];
} int k;
mint get(mint a, ll m) {
if( a.x == 1 && a.y == 0 ) return m%MOD + 1;
else return (mpow(a, m + 1) - 1) / (a - 1);
}
mint solve(ll m) {
mint ans = 0;
for(int j=0;j<=k;j++) {
mint del = 0;
for(int p=0;p<=j;p++) {
mint tmp = mpow(A2, p) * mpow(B2, j-p);
del = del + c[j][p] * get(tmp, m);
}
ans = ans + s[k][j] * del;
}
return ans;
} int main() {
ll l, r; init();
scanf("%d%lld%lld", &k, &l, &r), l += 2, r += 2;
mint p = 1; for(int i=1;i<=k;i++) p = p*i;
printf("%d\n", ((solve(r) - solve(l-1))/p).x);
}

@details@

注意等比数列特判公比为 1 !!!(老是记不住)

貌似是 BJOI2019 的勘破神机?

@codeforces - 717A@ Festival Organization的更多相关文章

  1. CF 717A Festival Organization——斯特林数+递推求通项+扩域

    题目:http://codeforces.com/contest/717/problem/A 是 BJOI2019 勘破神机 的弱化版. 令 \( g[i] \) 表示长为 i .以 1 结尾的方案数 ...

  2. CF717 Festival Organization

    \(CF717\ Festival\ Organization\) Description 一个合法的串定义为:长度在 \([l,r]\) 之间,且只含 \(0,1\),并且不存在连续 \(2\) 个 ...

  3. CF717A Festival Organization(第一类斯特林数,斐波那契数列)

    题目大意:求 $\sum\limits_{n=l}^{r}\dbinom{f_n}{k}\bmod 10^9+7$.其中 $f_n$ 是长度为 $n$ 的 $01$ 序列中,没有连续两个或超过两个 $ ...

  4. Codeforces Round #127 (Div. 1) E. Thoroughly Bureaucratic Organization 二分 数学

    E. Thoroughly Bureaucratic Organization 题目连接: http://www.codeforces.com/contest/201/problem/E Descri ...

  5. codeforces 340C Tourist Problem

    link:http://codeforces.com/problemset/problem/340/C 开始一点也没思路,赛后看别人写的代码那么短,可是不知道怎么推出来的啊! 后来明白了. 首先考虑第 ...

  6. codeforces magic five --快速幂模

    题目链接:http://codeforces.com/contest/327/problem/C 首先先算出一个周期里面的值,保存在ans里面,就是平常的快速幂模m做法. 然后要计算一个公式,比如有k ...

  7. Codeforces Round #219 (Div. 2) E. Watching Fireworks is Fun

    http://codeforces.com/contest/373/problem/E E. Watching Fireworks is Fun time limit per test 4 secon ...

  8. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  9. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

随机推荐

  1. 跟我一起了解koa(二)

    koa中路由动态传值 1.路由 路由(Routing)是由一个 URI(或者叫路径)和一个特定的 HTTP 方法(GET.POST 等) 组成的,涉及到应用如何响应客户端对某个网站节点的访问. 通俗的 ...

  2. 实战课堂 | DMS企业版教你用一条SQL搞定跨实例查询

    背景 数据管理DMS企业版提供了安全.高效地管理大规模数据库的服务.面对多元的数据库实例,为了更方便地查询被“散落”在各个地方的业务数据,我们在DMS企业版中提供了跨数据库实例查询服务. 什么是跨实例 ...

  3. 2019阿里云开年Hi购季满返活动火热报名中!

    摘要: 在每年开年的这个大幅度优惠促销月,怎样才能花最少的钱配置最特惠的云服务?请看本文! 2019阿里云云上采购季活动已经于2月25日正式开启,从已开放的活动页面来看,活动分为三个阶段: 2月25日 ...

  4. global.fun.php

    <?php /**   所有公共函数文件*/ /**    序列化*/function _serialize($obj){    return base64_encode(gzcompress( ...

  5. Django项目:CRM(客户关系管理系统)--17--09PerfectCRM实现King_admin显示注册表的内容

    {#table_data_list.html#} {## ————————08PerfectCRM实现King_admin显示注册表的字段表头————————#} {% extends 'king_m ...

  6. TZ_03_mybatis的注解开发

    1.一对多的注解开发 1>需求通过查询所有的用户,并且找到该用户的所有账户(使用延迟加载模式) @Select("select * from user") //sql语句查询 ...

  7. Linux 拷贝有更改的文件

    cp -Ruv /home/username/trunk_new/app/* /data/httpdocs/wwwroot/app/

  8. For循环和闭包问题

    考虑一下以下的代码片段: for (var i = 0; i < 5; i++) { var btn = document.createElement('button'); btn.append ...

  9. CodeChef--EQUAKE

    题目链接 Earthquake in Bytetown! Situation is getting out of control! All buildings in Bytetown stand on ...

  10. LAMP环境搭建和配置(2)

    配置httpd 默认虚拟主机 编辑hpptd的主配置文件 搜索httpd-vhost,把行首的#号删除 保存主配置文件,然后编辑虚拟主机配置文件 重新编辑配置段(第一段为默认虚拟主机) ServerA ...