如何计算 \(\displaystyle \zeta \left ( 2 \right )=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots =~?\) 这个问题是在1644年由意大利数学家蒙哥利(Pietro Mengoli)提出的,而大数学家欧拉于1735年第一次解决了这个问题。他得出著名的结果:
\[\Huge\boxed{\displaystyle\zeta \left ( 2 \right )=\sum_{n=1}^{\infty }\frac{1}{n^{2}}=\frac{\pi ^{2}}{6}}\]

原文地址:http://www.cnblogs.com/misaka01034/p/BaselProof.html

原文作者:御坂01034

【转载】巴塞尔问题(Basel Problem)的多种解法的更多相关文章

  1. 巴塞尔问题(Basel problem)的多种解法

    巴塞尔问题(Basel problem)的多种解法——怎么计算\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots112+122+132+⋯ ? (PS:本 ...

  2. 巴塞尔问题(Basel problem)的多种解法——怎么计算$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots$ ?

    (PS:本文会不断更新) $\newcommand\R{\operatorname{Res}}$ 如何计算$\zeta(2)=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{ ...

  3. 多种解法解决n皇后问题

    多种解法解决n皇后问题 0x1 目的 ​ 深入掌握栈应用的算法和设计 0x2 内容 ​ 编写一个程序exp3-8.cpp求解n皇后问题. 0x3 问题描述 即在n×n的方格棋盘上,放置n个皇后,要求每 ...

  4. 【BZOJ4555】求和(多种解法混合版本)

    [BZOJ4555]求和(多种解法混合版本) 题面 BZOJ 给定\(n\),求 \[f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)\times 2^j \times ...

  5. hdu4975 A simple Gaussian elimination problem.(正确解法 最大流+删边判环)(Updated 2014-10-16)

    这题标程是错的,网上很多题解也是错的. http://acm.hdu.edu.cn/showproblem.php?pid=4975 2014 Multi-University Training Co ...

  6. 转载“启动\关闭Oracle数据库的多种方法”--来自百度#Oracle

    启动\关闭Oracle数据库的多种方法 启动和关闭oracle有很多种方法. 这里只给出3种方法: l         Sql*plus l         OEM控制台 l         Wind ...

  7. 算法笔记_001:斐波那契数的多种解法(Java)

    本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第 ...

  8. POJ 2263 Heavy Cargo 多种解法

    好题.这题可以有三种解法:1.Dijkstra   2.优先队列   3.并查集 我这里是优先队列的实现,以后有时间再用另两种方法做做..方法就是每次都选当前节点所连的权值最大的边,然后BFS搜索. ...

  9. [leetcode] Longest Palindromic Substring 多种解法

    非常经典的题目,求字符串中的最长回文子串. (1)最朴素的解法 ---暴力 复杂度O(N³) 这也是最easy想到的方法.最外层循环枚举起点i,第二层循环从i+1開始向后枚举,第三层推断是不是回文串. ...

随机推荐

  1. 2020牛客竞赛 DP F 碎碎念

    作者:儒生雄才1链接:https://ac.nowcoder.com/discuss/366644来源:牛客网 题目连接:https://ac.nowcoder.com/acm/contest/300 ...

  2. 题解【AcWing275】[NOIP2008]传纸条

    题面 首先有一个比较明显的状态设计:设 \(dp_{x1,y1,x2,y2}\) 表示第一条路线走到 \((x1,y1)\) ,第二条路线走到 \((x2,y2)\) 的路径上的数的和的最大值. 这个 ...

  3. python使用临时文件

    # 需求 # 某项目中,我们从传感器中采集数据,没采集1G数据后,做数据分析,最终只保存分析结果 # 这样很大的临时文件如果常驻在内存,将消耗大量地内存资源,我们可以使用临时文件储存(外部储存) # ...

  4. How to Create an OCM Response file to Apply a Patch in Silent Mode - opatch silent

    Windows Server 2019 打补丁时缺少Oracle Configuration Manager(OCM) 响应文件处理方式. 适用: Oracle Universal Installer ...

  5. MSSQL 打开xp_cmdshell

    sp_configure reconfigure go sp_configure reconfigure go

  6. appium---webview(H5)元素定位

    我们在做UI自动化的时候,肯定需要元素定位,那么webview(H5)的元素怎么定位呢? webview定位方法 方法一: 1.打开chrome浏览器,输入chrome://inspect 2.连接手 ...

  7. [thinkphp] 启用__PUBLIC__

    我真是受够了,,, 为了解决__PUBLIC__不能用的问题 我折腾了好几天了,然后终于被我找到了原因 解决过程 首先必须贴出来帮助我的人 https://my.oschina.net/u/12630 ...

  8. find & grep 总 结

    前言 关于本文 总 结 了 find.grep常 规 用 法,正 则 表 达 式,find与 grep合 用 以 及 自 定 义 搜 索 函 数 等 什么是find和grep find 和 grep ...

  9. Go_select

    select 是 Go 中的一个控制结构.select 语句类似于 switch 语句,但是select会随机执行一个可运行的case.如果没有case可运行,它将阻塞,直到有case可运行. sel ...

  10. Android 服务和广播的使用

    Android 服务和广播的使用 服务的使用 创建服务类 创建一个java文件,取名 mService.java,继承Service. public class mService extends Se ...