tensorflow之tf.train.exponential_decay()指数衰减法
exponential_decay(learning_rate, global_steps, decay_steps, decay_rate, staircase=False, name=None)
使用方式:
tf.tf.train.exponential_decay()
例子:
tf.train.exponential_decay(self.config.e_lr, self.e_global_steps,self.config.decay_steps, self.config.decay_rate, staircase=True)
在 Tensorflow 中,exponential_decay()是应用于学习率的指数衰减函数(实现指数衰减学习率)。
在训练模型时,通常建议随着训练的进行逐步降低学习率。该函数需要`global_step`值来计算衰减的学习速率。
该函数返回衰减后的学习率。该函数的计算方程式如下
参数:
- learning_rate - 初始学习率
- global_step - 用于衰减计算的全局步骤。 一定不为负数。喂入一次 BACTH_SIZE 计为一次 global_step
- decay_steps - 衰减速度,一定不能为负数,每间隔decay_steps次更新一次learning_rate值
- decay_rate - 衰减系数,衰减速率,其具体意义参看函数计算方程(对应α^t中的α)。
- staircase - 若 ‘ True ’ ,则学习率衰减呈 ‘ 离散间隔 ’ (discrete intervals),具体地讲,`global_step / decay_steps`是整数除法,衰减学习率( the decayed learning rate )遵循阶梯函数;若为 ’ False ‘ ,则更新学习率的值是一个连续的过程,每步都会更新学习率。
返回值:
- 与初始学习率 ‘ learning_rate ’ 相同的标量 ’ Tensor ‘ 。
优点:
- 训练伊始可以使用较大学习率,以快速得到比较优的解。
- 后期通过逐步衰减后的学习率进行迭代训练,以使模型在训练后期更加稳定。
示例代码:
import tensorflow as tf
import matplotlib.pyplot as plt
learning_rate = 0.1
decay_rate = 0.96
global_steps = 1000
decay_steps = 100
global_step = tf.Variable(0, trainable = Fasle)
c = tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=True)
d = tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False)
T_C = []
F_D = []
with tf.Session() as sess:
for i in range(global_steps):
T_c = sess.run(c, feed_dict={global_step: i})
T_C.append(T_c)
F_d = sess.run(d, feed_dict={global_step: i})
F_D.append(F_d)
plt.figure(1)
plt.plot(range(global_steps), F_D, 'r-')
plt.plot(range(global_steps), T_C, 'b-')
plt.show()
实操:
运行结果:
备注:
(1)
台阶形状的蓝色线是 staircase = True
线条形状的红色线是 staircase = Fasle
(2)
初始学习率 learning_rate 为0.1,总训练次数 global_setps 为 1000 次;staircase=True时,每隔 decay_steps = 100 次更新一次 学习率 learning_rate,而staircase=True时,每一步均会更新一次学习率 learning_rate ,
(3)
训练过程中,decay_rate的数值保持步不变。
参考文献:https://www.cnblogs.com/gengyi/p/9898960.html
tensorflow之tf.train.exponential_decay()指数衰减法的更多相关文章
- TensorFlow 中的 tf.train.exponential_decay() 指数衰减法
exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) 使 ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- TensorFlow:tf.train.Saver()模型保存与恢复
1.保存 将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.S ...
- tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...
- tensorflow的tf.train.Saver()模型保存与恢复
将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver( ...
- 【转载】 tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ----------------------------------------- ...
- [Tensorflow] 使用 tf.train.Checkpoint() 保存 / 加载 keras subclassed model
在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型. import tensorflow as tf tf.enable_eager ...
- TensorFlow 实战(二)—— tf.train(优化算法)
Training | TensorFlow tf 下以大写字母开头的含义为名词的一般表示一个类(class) 1. 优化器(optimizer) 优化器的基类(Optimizer base class ...
- tensorflow API _ 3 (tf.train.polynomial_decay)
学习率的三种调整方式:固定的,指数的,多项式的 def _configure_learning_rate(num_samples_per_epoch, global_step): "&quo ...
随机推荐
- laravel 队列重启
我在job中写了邮件发送 ,线下环境测试是无问题的 ,现在放到线上出现了问题. 问题描述: 部分时候邮件功能可用,部分时间邮件功能不可用. 邮件功能不可用的时候,job发送失败,失败原因是无发送人,打 ...
- Libev源码分析06:异步信号同步化--sigwait、sigwaitinfo、sigtimedwait和signalfd
一:信号简述 信号是典型的异步事件.内核在某个信号出现时有三种处理方式: a:忽略信号,除了SIGKILL和SIGSTOP信号不能忽略外,其他大部分信号都可以被忽略: b:捕捉信号,也就是在信号发生时 ...
- 【小程序案例】支付宝小程序-MQTT模器,IoT设备通过WSS接入阿里云IoT物联网平台
支付宝小程序-MQTT模拟器通过WSS接入阿里云IoT物联网平台 小程序效果: 1. 准备工作 1.1 注册阿里云账号 开通阿里云账号,并通过支付宝实名认证 https://www.aliyun.co ...
- iptables 规则(Rules)
iptables的每一条规则(rule),都是由两部分组成的,第一部分包含一或多个「过滤条件」其作用是检查包是否符合处理条件(所有条件都必须成立才算数) :第而部分称为「目标」,用於決定如何处置符合条 ...
- BERT大火却不懂Transformer?读这一篇就够了
https://zhuanlan.zhihu.com/p/54356280 大数据文摘与百度NLP联合出品 编译:张驰.毅航.Conrad.龙心尘 来源:https://jalammar.github ...
- Web应用中request获取path,URI,URL
Web应用中有各种获取path或URI,URL的方法,假设网页访问地址: http://localhost:8080/tradeload/TestServlet Web应用context: /trad ...
- SuperSocket进程级别隔离
在 SuperSocket 1.5 中, 我们增加了 AppDomain 级别隔离的功能,让你可以运行多个服务器实例在相互独立的 AppDomain 上. 此功能提供了较高级别的安全性和资源的隔离,并 ...
- keras 保存模型和加载模型
import numpy as npnp.random.seed(1337) # for reproducibility from keras.models import Sequentialfrom ...
- 【机器学习】【条件随机场CRF-2】CRF的预测算法之维特比算法(viterbi alg) 详解 + 示例讲解 + Python实现
1.CRF的预测算法条件随机场的预测算法是给定条件随机场P(Y|X)和输入序列(观测序列)x,求条件概率最大的输出序列(标记序列)y*,即对观测序列进行标注.条件随机场的预测算法是著名的维特比算法(V ...
- 教你如何成为Spark大数据高手?
教你如何成为Spark大数据高手? Spark目前被越来越多的企业使用,和Hadoop一样,Spark也是以作业的形式向集群提交任务,那么如何成为Spark大数据高手?下面就来个深度教程. Spark ...