exponential_decay(learning_rate,  global_steps, decay_steps, decay_rate, staircase=False, name=None)

使用方式:

tf.tf.train.exponential_decay()

例子:

tf.train.exponential_decay(self.config.e_lr, self.e_global_steps,self.config.decay_steps, self.config.decay_rate, staircase=True)

在 Tensorflow 中,exponential_decay()是应用于学习率的指数衰减函数(实现指数衰减学习率)。

在训练模型时,通常建议随着训练的进行逐步降低学习率。该函数需要`global_step`值来计算衰减的学习速率。

该函数返回衰减后的学习率。该函数的计算方程式如下

参数:

  • learning_rate - 初始学习率
  • global_step - 用于衰减计算的全局步骤。 一定不为负数。喂入一次 BACTH_SIZE 计为一次 global_step
  • decay_steps - 衰减速度,一定不能为负数,每间隔decay_steps次更新一次learning_rate值
  • decay_rate - 衰减系数,衰减速率,其具体意义参看函数计算方程(对应α^t中的α)。
  • staircase - 若 ‘ True ’ ,则学习率衰减呈 ‘ 离散间隔 ’ (discrete intervals),具体地讲,`global_step / decay_steps`是整数除法,衰减学习率( the decayed learning rate )遵循阶梯函数;若为 ’ False ‘ ,则更新学习率的值是一个连续的过程,每步都会更新学习率。

返回值:

  • 与初始学习率 ‘ learning_rate ’ 相同的标量 ’ Tensor ‘ 。

优点:

  • 训练伊始可以使用较大学习率,以快速得到比较优的解。
  • 后期通过逐步衰减后的学习率进行迭代训练,以使模型在训练后期更加稳定。

示例代码:

import tensorflow as tf
import matplotlib.pyplot as plt

learning_rate = 0.1
decay_rate = 0.96
global_steps = 1000
decay_steps = 100

global_step = tf.Variable(0, trainable = Fasle)
c = tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=True)
d = tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False)

T_C = []
F_D = []

with tf.Session() as sess:
for i in range(global_steps):
T_c = sess.run(c, feed_dict={global_step: i})
T_C.append(T_c)
F_d = sess.run(d, feed_dict={global_step: i})
F_D.append(F_d)

plt.figure(1)
plt.plot(range(global_steps), F_D, 'r-')
plt.plot(range(global_steps), T_C, 'b-')

plt.show()

实操:

运行结果:

备注:

(1)

台阶形状的蓝色线是 staircase = True

线条形状的红色线是 staircase = Fasle

(2)

初始学习率 learning_rate 为0.1,总训练次数 global_setps 为 1000 次;staircase=True时,每隔 decay_steps = 100 次更新一次 学习率 learning_rate,而staircase=True时,每一步均会更新一次学习率 learning_rate ,

(3)

训练过程中,decay_rate的数值保持步不变。

参考文献:https://www.cnblogs.com/gengyi/p/9898960.html

tensorflow之tf.train.exponential_decay()指数衰减法的更多相关文章

  1. TensorFlow 中的 tf.train.exponential_decay() 指数衰减法

    exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None) 使 ...

  2. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数(转)

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  3. TensorFlow:tf.train.Saver()模型保存与恢复

    1.保存 将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.S ...

  4. tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数 ...

  5. tensorflow的tf.train.Saver()模型保存与恢复

    将训练好的模型参数保存起来,以便以后进行验证或测试.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf.train.Saver( ...

  6. 【转载】 tensorflow中 tf.train.slice_input_producer 和 tf.train.batch 函数

    原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ----------------------------------------- ...

  7. [Tensorflow] 使用 tf.train.Checkpoint() 保存 / 加载 keras subclassed model

    在 subclassed_model.py 中,通过对 tf.keras.Model 进行子类化,设计了两个自定义模型. import tensorflow as tf tf.enable_eager ...

  8. TensorFlow 实战(二)—— tf.train(优化算法)

    Training | TensorFlow tf 下以大写字母开头的含义为名词的一般表示一个类(class) 1. 优化器(optimizer) 优化器的基类(Optimizer base class ...

  9. tensorflow API _ 3 (tf.train.polynomial_decay)

    学习率的三种调整方式:固定的,指数的,多项式的 def _configure_learning_rate(num_samples_per_epoch, global_step): "&quo ...

随机推荐

  1. MySQL列出当前月的每一天

    因为工作的原因,要用MySQL列出当前月份每一天的日期,自己查了下网上资料都是列出最近一个月的日期的解决方案,自己根据查到的的方案,修改成了下面两个方案,在此记录下: 方案一: SELECT date ...

  2. 2019-7-1-VisualStudio-快速设置启动项目

    title author date CreateTime categories VisualStudio 快速设置启动项目 lindexi 2019-07-01 14:37:38 +0800 2019 ...

  3. 学习HTML<audio>标签

    首先来看下这个例子: <audio controls autoplay="autoplay"> <source src="horse.ogg" ...

  4. 系统学习前端之FormData详解

    FormData 1. 概述 FormData类型其实是在XMLHttpRequest 2级定义的,它是为序列化表以及创建与表单格式相同的数据(当然是用于XHR传输)提供便利. 2. 构造函数 创建一 ...

  5. Laravel5使用ElasticSearch

    https://blog.csdn.net/qq_16829085/article/details/80725125 安装elasticsearch和ik插件 (elasticsearch的使用需要配 ...

  6. Google Colab——用谷歌免费GPU跑你的深度学习代码

    Google Colab简介 Google Colaboratory是谷歌开放的一款研究工具,主要用于机器学习的开发和研究.这款工具现在可以免费使用,但是不是永久免费暂时还不确定.Google Col ...

  7. 字符串编辑距离(Edit Distance)

    一.问题描述定义字符串编辑距离(Edit Distance),是俄罗斯科学家 Vladimir Levenshtein 在 1965 年提出的概念,又称 Levenshtein 距离,是指两个字符串之 ...

  8. DOM常用操作,Sass基础

    一个元素的子元素个数ParentNode.childElementCount 只读属性返回一个无符号长整型数字,表示给定元素的子元素数. 取消当前事件e.preventDefault();有时候我们选 ...

  9. POJ 1182食物链、

    应用挑战程序设计那本书上的话: 对于每只动物i创建3个元素i—A,i—B,i—C,并用3xN个元素建立并查集.这个并查集维护如下信息: (1)i—x表示“i属于种类x” (2)并查集里的每一个组表示组 ...

  10. webpack学习(三)配置loader

    首先搞清楚两个问题: 1 什么是loader? 2 为啥要用各种loader 答: loader 就是各种打包规则,为什么要用是显而易见的,因为webpack还没智能到给它什么文件都能打包,对于js文 ...