傅立叶变换—FFT
FFT(快速傅立叶变换)使用“分而治之”的策略来计算一个n阶多项式的n阶DFT系数的值。定义n为2的整数幂数,为了计算一个n阶多项式f(x),算法定义了连个新的n/2阶多项式,函数f[0](x)包含了f(x)中的x偶次幂项,函数f[1](x)f(x)中的x奇次幂项。
f[0]=a0+a2x+a4x2+ ...+an-2xn/2-1
f[1]=a1+a3x+a5x2+ ...+an-1xn/2-1
则f(x) = f[0](x2)+ xf[1](x2),因此wn0,wn1,...wnn-1点计算f(x)的值得问题转化成计算f[0]和f[1]在(wn0)2,(wn1)2,...(wnn-1)2点的问题,然后计算f(x) = f[0](x2)+ xf[1](x2)。
FFT Code:
#include "stdio.h"
#include "math.h" #define LENGTH 4
#define PI 3.1415926 typedef struct Complex
{
float real;
float img;
}Complex; void Recursive_FFT(float *a,Complex *y,int len);
Complex Mul(Complex w,Complex y1_var);
Complex Add(Complex y0_var,int op,Complex mul_result ); int main()
{
float a[LENGTH] = {,,,}; Complex f[LENGTH];
Recursive_FFT(a,f,LENGTH); int i;
for(i=;i<LENGTH;i++)
{
if(f[i].real !=)
{
printf("%3.1f",f[i].real);
}
if(f[i].img !=)
{
printf("+%3.1fi",f[i].img);
}
printf("\n");
}
} //递归求解,a为输入的初始矩阵,y为计算出来的频率矩阵
void Recursive_FFT(float *a,Complex *y,int len)
{
Complex w0,wn;
Complex y0[len/],y1[len/]; w0.real = 1.0;
w0.img = 0.0; wn.real = cos(- * PI /(float) len);
wn.img = sin(- * PI / (float) len); float a0[len/];
float a1[len/];
int count_a0 = ;
int count_a1 = ; int i;
if(len == )
{
y[].real = a[];
y[].img = ;
}
else
{
for(i=;i<len;i++)
{
if(i % )
{
a0[count_a0++] = a[i];
}
else
{
a1[count_a1++] = a[i];
}
} Recursive_FFT(a0,y0,len/);
Recursive_FFT(a1,y1,len/); int k;
Complex w = w0;;
for(k=;k<len/;k++)
{
y[k] = Add(y0[k],,Mul(w,y1[k]));
y[k+len/] = Add(y0[k],-,Mul(w,y1[k]));
w = Mul(w,wn);
}
} } //乘法运算
Complex Mul(Complex w,Complex y1_var)
{
Complex result;
result.real = w.real * y1_var.real - w.img * y1_var.img;
result.img = w.real * y1_var.img + w.img * y1_var.real;
return result;
}
//op为1则为加法运算,-1为减法运算
Complex Add(Complex y0_var,int op,Complex mul_result )
{
Complex result;
if(op == )
{
result.real = y0_var.real + mul_result.real;
result.img = y0_var.img + mul_result.img;
}
else
{
result.real = y0_var.real - mul_result.real;
result.img = y0_var.img - mul_result.img;
} return result;
}
时间复杂度:O(n*logn)。
傅立叶变换—FFT的更多相关文章
- 快速傅立叶变换(FFT)算法
已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...
- TOT 傅立叶变换 FFT 入门
HDU 1402,计算很大的两个数相乘. FFT 只要78ms,这里: 一些FFT 入门资料:http://wenku.baidu.com/view/8bfb0bd476a20029bd642d85. ...
- 快速傅立叶变换FFT模板
递归版 UOJ34多项式乘法 //容易暴栈,但是很好理解 #include <cmath> #include <iostream> #include <cstdio> ...
- 傅立叶变换—FFT(cuda实现)
背景: 无意间看到cuda解决FFT有一个cufft函数库,大体查看了有关cufft有关知识,写了一个解决一维情况的cuda代码,据调查知道cufft在解决1D,2D,3D的情况时间复杂度都为O(nl ...
- 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换
写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...
- Matlab图像处理系列4———傅立叶变换和反变换的图像
注意:这一系列实验的图像处理程序,使用Matlab实现最重要的图像处理算法 1.Fourier兑换 (1)频域增强 除了在空间域内能够加工处理图像以外,我们还能够将图像变换到其它空间后进行处理.这些方 ...
- Matlab图像处理系列4———图像傅立叶变换与反变换
注:本系列来自于图像处理课程实验.用Matlab实现最主要的图像处理算法 1.Fourier变换 (1)频域增强 除了在空间域内能够加工处理图像以外.我们还能够将图像变换到其它空间后进行处理.这些方法 ...
- 离散傅立叶变换与快速傅立叶变换(DFT与FFT)
自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...
- $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换
\(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...
随机推荐
- 2018-2-13-win10-uwp-如何让-Page-继承泛型类
title author date CreateTime categories win10 uwp 如何让 Page 继承泛型类 lindexi 2018-2-13 17:23:3 +0800 201 ...
- HTTP协议详解以及URL具体访问过程(转载)
https://blog.csdn.net/f45056231p/article/details/82533490
- jQuery+css3实现极具创意的罗盘旋转时钟效果源码
效果 HTML代码 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> < ...
- [转]【转】大型高性能ASP.NET系统架构设计
大型高性能ASP.NET系统架构设计 大型动态应用系统平台主要是针对于大流量.高并发网站建立的底层系统架构.大型网站的运行需要一个可靠.安全.可扩展.易维护的应用系统平台做为支撑,以保证网站应用的平稳 ...
- 怎样在RxJS Observable中使用Async-Await
怎样在RxJS Observable中使用Async-Await 一般情况下 async-await 和 Observables 并不能“在一起使用”.但RxJS 从一开始就具备与 Promises ...
- call undefined function openssl_cipher_iv_length
现象: 访问localhost/blog/public时,报错在verdor/framework/src/Illuminate/Encryption/Encrtpter.php的84行,找不到open ...
- js基础——function类型
1.函数声明方式 1)普通声明方式 function box(num1,num2){ return num1 + num2; } 2)使用变量初始化函数 var box = funct ...
- Python中&、^与and、or
导火索:给定两个列表,怎么找出他们相同的元素和不通的元素? list1 = [1, 2, 3, 4, 57, 8, 90] list2 = [2, 3, 4, 5, 6, 7, 8] lis = li ...
- openwrt上wifi探针的实现----mt7620a+rt2860v2
openwrt上wifi探针的实现----mt7620a+rt2860v2 [摘要:甚么是wifi探针 看到探针,感到很矮小上的模样,实在便是经过wifi汇集经由那个AP局限的脚机的mac地点,出有甚 ...
- tensorflow学习笔记——ResNet
自2012年AlexNet提出以来,图像分类.目标检测等一系列领域都被卷积神经网络CNN统治着.接下来的时间里,人们不断设计新的深度学习网络模型来获得更好的训练效果.一般而言,许多网络结构的改进(例如 ...