正解:$BSGS$

解题报告:

传送门$QwQ$

首先看到这个若干个一,发现不好表示,考虑两遍同时乘九加一,于是变成$10^n\equiv 9\cdot K+1(mod\ m)$

昂然后不就是$bsgs$板子了嘛?太板子了不说了$kk$

$over$

然后说下,这个数据比较大,#8#9的都要$int128$或者龟速乘.

然后因为不知名原因全开$int128$会$CE$

最后我瞎选了几个数开$int128$过的,,,

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define lf double
#define gc getchar()
#define ll long long
#define i128 __int128
#define ri register ll
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i) ll K,mod;
map<i128,ll>M; il i128 read()
{
rc ch=gc;i128 x=0;rb y=1;
while(ch!='-' && (ch>'9' || ch<'0'))ch=gc;
if(ch=='-')ch=gc,y=0;
while(ch>='0' && ch<='9')x=(x<<1)+(x<<3)+(ch^'0'),ch=gc;
return y?x:-x;
}
il i128 power(i128 x,i128 y){ri ret=1;while(y){if(y&1)ret=1ll*ret*x%mod;x=1ll*x*x%mod;y>>=1;}return ret;}
il void BSGS(i128 x,i128 y)
{
i128 m=sqrt(mod)+1,t=y;rp(i,0,m-1)M[t]=i,t=1ll*t*x%mod;
i128 tmp=power(x,m);t=tmp;
rp(i,1,m){if(M.count(t)){printf("%lld\n",1ll*i*m-M[t]);return;}t=1ll*t*tmp%mod;}
} signed main()
{
//freopen("4884.in","r",stdin);freopen("4884.out","w",stdout);
K=read();mod=read();BSGS(10,9*K+1);
return 0;
}

洛谷$P4884$ 多少个1? 数论的更多相关文章

  1. 洛谷P4204 [NOI2006]神奇口袋 数论

    正解:数论 解题报告: 传送门 第一次用\(\LaTeX\)和\(markdown\),,,如果出了什么锅麻烦在评论跟我港句QAQ \(1)x_{i}\)可以直接离散 \(2)y_{i}\)的顺序对结 ...

  2. 3150luogu洛谷

    若说代码 那真的是很水 但是 思想却有点意思 这道题是洛谷博弈论专题的第一道入门题, 然而刚开始我是不会做的, 毕竟是道入门题, 我博弈论还没入门呢. 这道题的做法就是: 如果m为偶数, 那么先手赢( ...

  3. 洛谷P4358密钥破解 [CQOI2016] 数论

    正解:数论 解题报告: 先,放个传送门QwQ 这题难点可能在理解题意,,, 所以我先放个题意QAQ 大概就是说,给定一个整数N,可以被拆成两个质数的成绩p*q,然后给出了一个数e,求d满足e*d=1( ...

  4. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  5. 洛谷P3166 数三角形 [CQOI2014] 数论

    正解:数论 解题报告: 传送门! 很久以前做的题了呢,,,回想方法还想了半天QAQ 然后写这题题解主要是因为看到了好像有很新颖的法子,就想着,学习一下趴,那学都学了不写博客多可惜 首先港下最常规的方法 ...

  6. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  7. 洛谷P1403 [AHOI2005] 约数研究 [数论分块]

    题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...

  8. P1219 八皇后 洛谷

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  9. 洛谷$P5444\ [APIO2019]$奇怪装置 数论

    正解:数论 解题报告: 传送门$QwQ$ 我好像当初考的时候这题爆零了,,,部分分都没想到,,,我真的好菜$kk$ 考虑如果在$t_1,t_2$两个时刻有$x_1=x_2,y_1=y_2$是什么情况$ ...

  10. P1075,P1138(洛谷)

    今天难得做了做洛谷的题,而且还是两个! P1075:已知正整数n是两个不同的质数的乘积,试求出两者中较大的那个质数.输入格式:一个正整数n.输出格式:一个正整数p,即较大的那个质数. 第一版代码: # ...

随机推荐

  1. Laravel5.1 实现第三方登录认证教程之 - 微信登录

    https://laravel-china.org/topics/2451/laravel51-implementation-of-the-third-party-login-authenticati ...

  2. uniapp APP端使用指纹

    使用插件指纹模板: https://ext.dcloud.net.cn/plugin?id=358 Fingerprint模块管理指纹识别 要使用指纹识别功能需要具备条件: 确认当前设备环境是否支持指 ...

  3. hdu 3272 Mission Impossible

    Mission Impossible Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. python selenium处理JS只读(12306)

    12306为例 js = "document.getElementById('train_date').removeAttribute('readonly');" driver.e ...

  5. hdu 5723 Abandoned country(2016多校第一场) (最小生成树+期望)

    Abandoned country Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  6. poj 1436 && zoj 1391 Horizontally Visible Segments (Segment Tree)

    ZOJ :: Problems :: Show Problem 1436 -- Horizontally Visible Segments 用线段树记录表面能被看见的线段的编号,然后覆盖的时候同时把能 ...

  7. laravel 授权使用gate门类

    第一:先注册 第二:使用方式三种 路由中:Route::group(['middleware'=>'can:system'],function() {}) 模板中:@can("syst ...

  8. p2p平台详细运营框架

    市场拓展部1.负责完成公司市场销售.市场拓展.费用控制等年度目标任务,并负责将目标责任制分解落实,确保各项工作目标得以实现.2.对营销政策.市场及同业营销动态等方面进行调研分析,及时调整营销策略和计划 ...

  9. H3C 最大跳数16导致网络尺度小

  10. 【js】vue 2.5.1 源码学习 (四) 钩子函数 资源选项 watch 的合并策略

    大体思路 (三)    1.钩子函数 自定义策略       LIFECYCLE_HOOKS= []      created = [function(){} , function(){}] 组装方法 ...