The only difference between easy and hard versions is the constraints.

Vova likes pictures with kittens. The news feed in the social network he uses can be represented as an array of n

consecutive pictures (with kittens, of course). Vova likes all these pictures, but some are more beautiful than the others: the i-th picture has beauty ai

.

Vova wants to repost exactly x

pictures in such a way that:

  • each segment of the news feed of at least k
  • consecutive pictures has at least one picture reposted by Vova;
  • the sum of beauty values of reposted pictures is maximum possible.

For example, if k=1

then Vova has to repost all the pictures in the news feed. If k=2

then Vova can skip some pictures, but between every pair of consecutive pictures Vova has to repost at least one of them.

Your task is to calculate the maximum possible sum of values of reposted pictures if Vova follows conditions described above, or say that there is no way to satisfy all conditions.

Input

The first line of the input contains three integers n,k

and x (1≤k,x≤n≤5000

) — the number of pictures in the news feed, the minimum length of segment with at least one repost in it and the number of pictures Vova is ready to repost.

The second line of the input contains n

integers a1,a2,…,an (1≤ai≤109), where ai is the beauty of the i

-th picture.

Output

Print -1 if there is no way to repost some pictures to satisfy all the conditions in the problem statement.

Otherwise print one integer — the maximum sum of values of reposted pictures if Vova follows conditions described in the problem statement.

Examples
Input

Copy
5 2 3
5 1 3 10 1
Output

Copy
18
Input

Copy
6 1 5
10 30 30 70 10 10
Output

Copy
-1
Input

Copy
4 3 1
1 100 1 1
Output

Copy
100

题意 : 给你 n 个数字,要求从中选出 x 个数字,但任意连续的长度为 k 的区间中必须至少选择一个元素,询问所选择元素的最大的和是多少?

思路分析 :

  定义 dp[i][j] 表示前 i 个树中选择 j 个数的最大得分

代码示例 :

n = 200

#define ll long long
const ll maxn = 1e6+5;
const ll mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const ll inf = 0x3f3f3f3f; ll n, k, x;
ll a[205];
ll dp[205][205]; void solve() {
memset(dp, -1*inf, sizeof(dp));
//printf("%lld ++++\n", dp[0][0]);
dp[0][0] = 0;
for(ll i = 1; i <= n; i++){
for(ll j = max(0ll, i-k); j <= i-1; j++){
for(ll f = 1; f <= x; f++){
dp[i][f] = max(dp[i][f], dp[j][f-1]+a[i]);
//prllf("++++ %d %d %d %d\n", i, j, f, dp[i][f]);
}
}
} ll ans = -1;
for(ll i = n; i > n-k; i--) ans = max(ans, dp[i][x]);
printf("%lld\n", ans);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> k >> x;
for(ll i = 1; i <= n; i++){
scanf("%lld", &a[i]);
}
solve();
return 0;
}

n = 5000

#define ll long long
const ll maxn = 1e6+5;
const ll mod = 1e9+7;
const double eps = 1e-9;
const double pi = acos(-1.0);
const ll inf = 0x3f3f3f3f;
typedef pair<ll, ll> P; // pos val
#define fi first
#define se second ll n, k, x;
ll a[5005];
deque<P>que[5005];
ll dp[5005][5005]; void solve() {
memset(dp, -1*inf, sizeof(dp));
dp[0][0] = 0;
que[0].push_back(P(0, 0));
ll ans = -1; for(ll i = 1; i <= n; i++){
ll pos = max(i-k, 0ll);
for(ll j = 1; j <= x; j++){
while(!que[j-1].empty() && que[j-1].front().fi < pos){
que[j-1].pop_front();
}
}
for(ll j = 1; j <= x; j++){
if (!que[j-1].empty()) {
ll p = que[j-1].front().fi;
ll val = que[j-1].front().se;
dp[i][j] = max(dp[i][j], dp[p][j-1]+a[i]);
//printf("^^^^^^^^^^^ %lld %lld %lld ++++ %lld %lld %lld\n", i, j, dp[i][j], p, j-1, dp[p][j-1]);
}
}
for(ll j = 1; j <= x; j++){
while(!que[j].empty() && dp[i][j] >= que[j].back().se) que[j].pop_back();
if (dp[i][j] > 0) que[j].push_back(P(i, dp[i][j]));
if (i > n-k) ans = max(ans, dp[i][j]);
}
//for(ll j = 1; j <= x; j++) {
//printf("++++ %lld %lld %lld\n", i, j, dp[i][j]);
//}
}
printf("%lld\n", ans);
} int main() {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
cin >> n >> k >> x;
for(ll i = 1; i <= n; i++){
scanf("%lld", &a[i]);
}
solve();
return 0;
}

单调队列优化 dp的更多相关文章

  1. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  4. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  5. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  6. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  7. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  8. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

  9. BZOJ1791[Ioi2008]Island 岛屿 ——基环森林直径和+单调队列优化DP+树形DP

    题目描述 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样的岛屿,都有一 ...

  10. P4381 [IOI2008]Island(基环树+单调队列优化dp)

    P4381 [IOI2008]Island 题意:求图中所有基环树的直径和 我们对每棵基环树分别计算答案. 首先我们先bfs找环(dfs易爆栈) 蓝后我们处理直径 直径不在环上,就在环上某点的子树上 ...

随机推荐

  1. windows环境下pgsql的安装与使用

  2. linux kdb 内核调试器

    许多读者可能奇怪为什么内核没有建立更多高级的调试特性在里面.答案, 非常简单, 是 Linus 不相信交互式的调试器. 他担心它们会导致不好的修改, 这些修改给问题打了补丁 而不是找到问题的真正原因. ...

  3. MySQL面试(二)

    1.为什么索引遵循最左匹配原则? 当B+树的数据项是符合的数据结构,比如(name,age,sex)的时候,B+树是按照从左到右的顺序建立搜索树的.比如当(张三,20,F)这样的数据来检索的时候,b+ ...

  4. linux 重用 short 为 I/O 内存

    short 例子模块, 在存取 I/O 端口前介绍的, 也能用来存取 I/O 内存. 为此, 你必须告 诉它使用 I/O 内存在加载时; 还有, 你需要改变基地址来使它指向你的 I/O 区. 例如, ...

  5. 关于vue-cli打包配置部署404

    在vue脚手架(vue-cli)下我很很快的就可以搭建自己的开发环境,但是我们把项目编写完后,需要进行打包上线会遇到各种问题,在根据版本问题,(vue3的版本跟之前相比少了很多配置项),下面是我用老版 ...

  6. C# 转换类型和字符串

    有时候我们需要互转类型和字符串,把字符串转类型.把类型转字符串. 如果是基础类型,可以使用 x.Parse 这个方法,很多基础类型都支持. 那么我们可以使用 TypeDescriptor string ...

  7. Comb CodeForces - 46E (动态规划)

    题面 Having endured all the hardships, Lara Croft finally found herself in a room with treasures. To h ...

  8. 一个vue管理系统的初步搭建总结

    ps:目前这个项目只是有一个大致的框架,并没有做完 前期准备工作 前端构建工具:Visual Studio Code后端构建工具:IDEA数据库和服务器构建工具:WampServer (使用的是2.4 ...

  9. 【49.23%】【hdu 1828】Picture

    Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...

  10. (1)51单片机NOP指令

    提问:什么是NOP指令?干什么用的?单片机程序里执行一条nop指令需要多长时间? (1)一个NOP就是一个机器周期 (2)空指令,延时一个机器周期 (3)这个与单片机型号.指令类型和使用的晶振频率有关 ...