B. Once Again...
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an array of positive integers a1, a2, ..., an × T of length n × T. We know that for any i > n it is true that ai = ai - n. Find the length of the longest non-decreasing sequence of the given array.

Input

The first line contains two space-separated integers: nT (1 ≤ n ≤ 100, 1 ≤ T ≤ 107). The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 300).

Output

Print a single number — the length of a sought sequence.

Examples
input
4 3
3 1 4 2
output
5
Note

The array given in the sample looks like that: 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2. The elements in bold form the largest non-decreasing subsequence.

  其实想了好久都不明白网上有人说是插空是怎么回事,现在也不明白。先记下,看以后会不会懂。。。只能泛泛的理解长度为n的序列重复n次应该会出现比较特殊的情况,比如‘循环’什么的。在怎么循环这个重复的序列也只有n个不同的数。t比n大很多,t<=n时直接做不会超时,t很大时,只求到重复n次的lis。之后加上后面原来数列里面出现次数最多的数的次数*(t-n)。可以想象,一个数在原序列里面出现次数越多,最长不下降数列里面它出现的几率和次数应该也是最多的。

实现过程中用到upper_bound()函数,它是求一个数的上界位置,就是比要求的数大的第一个位置,注意这里是大于不是大于等于。比如a[5]={1,2,2,2,5},upper_bound(a,a+5,2)-a=4.(严格来说返回的是数组编号地址)就是比2大的第一个位置下标为4。所以当数组里所有元素都小于等于给定的key的话,它会返回数组最后一个元素的下一个位置的下标,即upper_bound(a,a+5,5)-a=5。而lower_bound()函数是求大于等于当前值的第一个位置,所以lower_bound(a,a+5,2)-a=1,即第一次出现大于等于2的位置下标为1。

非下降子序列和递增有一点的不同就是允许重复。所以用upper_bound()求当前元素的下一个位置,再更新。知道upper_bound()的作用代码就好理解了:

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 1e4 + ;
int dp[MAXN];
int num[MAXN], a[];
int re[]; int main()
{
int n, t;
int maxncnt = ;
memset(re, , sizeof(re));
memset(dp, , sizeof(dp));
scanf("%d%d", &n, &t);
for (int i = ; i < n; i++) {
scanf("%d", &a[i]);
re[a[i]]++;
if (re[a[i]] > maxncnt) maxncnt = re[a[i]];
}
int cnt = ;
for (int i = ; i < min(n, t); i++) {
for (int j = ; j < n; j++)
num[cnt++] = a[j];
}
int val = ;
for (int i = ; i < cnt; i++) {
int pos = upper_bound(dp, dp + val, num[i]) - dp;
if (pos == val) dp[val++] = num[i];
else dp[pos] = num[i];
}
if (t > n) val += (t - n)*maxncnt;
printf("%d\n", val);
return ;
}

求非减lis处代码还可以仿照lis求法做下小改动。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 1e4 + ;
int dp[MAXN];
int num[MAXN], a[];
int re[],val; int main()
{
int n, t;
int maxncnt = ;
memset(re, , sizeof(re));
memset(dp, , sizeof(dp));
scanf("%d%d", &n, &t);
for (int i = ; i < n; i++) {
scanf("%d", &a[i]);
re[a[i]]++;
if (re[a[i]] > maxncnt) maxncnt = re[a[i]];
}
int cnt = ;
for (int i = ; i < min(n, t); i++) {
for (int j = ; j < n; j++) {
num[cnt++] = a[j];
}
}
int val = ;
dp[] = num[];
for (int i = ; i < cnt; i++) {
if (num[i] >= dp[val - ]) dp[val++] = num[i];
else
{
int pos = upper_bound(dp, dp + val, num[i]) - dp;
dp[pos] = num[i];
}
}
if (t > n) val += (t - n)*maxncnt;
printf("%d\n", val);
return ;
}

我非作死想要自己实现类似upper_bounder()的作用自己写二分,怎么写都不对,但还是有人会写。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 1e4 + ;
int dp[MAXN],num[MAXN];
int a[];
int re[], val; int binary_search(int i)
{
int left, right, mid;
left = , right = val;
while (left<right)
{
mid = (left + right) >> ;
if (dp[mid] > num[i]) right = mid;
else left = mid + ;
}
return left;
} int main()
{
int n, t;
int maxncnt = ;
memset(re, , sizeof(re));
memset(dp, , sizeof(dp));
scanf("%d%d", &n, &t);
for (int i = ; i <= n; i++) {
scanf("%d", &a[i]);
re[a[i]]++;
if (re[a[i]] > maxncnt) maxncnt = re[a[i]];
}
int cnt = ;
for (int i = ; i <= min(n, t); i++) {
for (int j = ; j <= n; j++)
num[cnt++] = a[j];
}
val = ;
dp[] = num[];
for (int i = ; i <= cnt; i++) {
if (num[i] >= dp[val])
dp[++val] = num[i];
else {
int pos = binary_search(i);
dp[pos] = num[i];
}
}
printf("%d\n", val + maxncnt*(t - min(n, t)));
return ;
}

另一种二分写法:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<map>
#include<algorithm>
using namespace std;
int a[];
int s[];
int m[]; int main()
{
int n,T;
scanf("%d%d",&n,&T);
memset(m,,sizeof(m));
int ansm=;
for(int i=;i<n;i++){
scanf("%d",a+i);
m[a[i]]++;
ansm=max(m[a[i]],ansm);
}
int top=;
for(int i=;i<min(n,T);i++){
for(int j=;j<n;j++){
if(top==||a[j]>=s[top-]){
s[top]=a[j];
top++;
}else{
int l=,r=top-;
int ans=r;
while(l<=r){
int mid=(l+r)>>;
if(s[mid]>a[j]){
ans=mid;
r=mid-;
}else{
l=mid+;
}
}
s[ans]=a[j];
}
}
}
printf("%d\n",top+ansm*(T-min(n,T)));
return ;
}

Codeforces Round #323 (Div. 2) Once Again... CodeForces - 582B 最长非下降子序列【dp】(不明白)的更多相关文章

  1. Codeforces Round #323 (Div. 2) D. Once Again... 暴力+最长非递减子序列

                                                                                  D. Once Again... You a ...

  2. Educational Codeforces Round 97 (Rated for Div. 2) E. Make It Increasing(最长非下降子序列)

    题目链接:https://codeforces.com/contest/1437/problem/E 题意 给出一个大小为 \(n\) 的数组 \(a\) 和一个下标数组 \(b\),每次操作可以选择 ...

  3. Codeforces Round #323 (Div. 2) D. Once Again... 乱搞+LIS

    D. Once Again... time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  4. Codeforces Round #205 (Div. 2)C 选取数列可以选择的数使总数最大——dp

    http://codeforces.com/contest/353/problem/C Codeforces Round #205 (Div. 2)C #include<stdio.h> ...

  5. Codeforces Round #323 (Div. 1) B. Once Again... 暴力

    B. Once Again... Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/582/probl ...

  6. Codeforces Round #323 (Div. 2) C. GCD Table 暴力

    C. GCD Table Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/583/problem/C ...

  7. 重复T次的LIS的dp Codeforces Round #323 (Div. 2) D

    http://codeforces.com/contest/583/problem/D 原题:You are given an array of positive integers a1, a2, . ...

  8. Codeforces Round #323 (Div. 2) C. GCD Table map

    题目链接:http://codeforces.com/contest/583/problem/C C. GCD Table time limit per test 2 seconds memory l ...

  9. Codeforces Round #323 (Div. 2) C.GCD Table

    C. GCD Table The GCD table G of size n × n for an array of positive integers a of length n is define ...

随机推荐

  1. LUOGU P4095 [HEOI2013]Eden 的新背包问题

    题目描述 " 寄 没 有 地 址 的 信 ,这 样 的 情 绪 有 种 距 离 ,你 放 着 谁 的 歌 曲 ,是 怎 样 的 心 情 . 能 不 能 说 给 我 听 ." 失忆的 ...

  2. Java Servlet实现下载文件

    一.配置servlet 在WebContent(以前的eclipse版本是WebRoot)文件夹下,有一个web.xml 修改web.xml ,加入以下代码 <servlet> <s ...

  3. maven打包时无法识别lombok中@Data生成的get set方法

    开发中使用了lombok,在使用maven编译打包时发现识别不了lombok通过注解@Data在实体类中生成的get,set方法.通过在网上的一篇博客找到了解决的办法,将maven-compiler- ...

  4. java-日期类

    一 显示系统时间 package cn.itcast.api.a.date; import java.text.DateFormat; import java.util.Date; public cl ...

  5. eclipse2018整合tomcat9

    eclipse2018整合tomcat9 选择 Windows --> preferences --> server --> runtime environmen:点击“add”按钮 ...

  6. 【模板】 递归线段树 [2017年五月计划 清北学堂51精英班Day4]

    P3372 [模板]线段树 1 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含两个整数N.M,分别 ...

  7. vue-router+iview(简单例子)

    根据上面我们已经建立好的工程项目,我们来加入路由等方法. 首先修改我们的HelloWorld.vue,加入iview的Layout组件 第二步,建立两个我们对应路由的文件 <style scop ...

  8. 安装scrapy问题:-bash:scrapy:command not found

    但是可以import,于是添加python3.5到环境变量,搞定 export PATH=$PATH:/usr/local/python3./bin/

  9. bzoj 1024 [SCOI2009]生日快乐——模拟

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1024 可以枚举这边放多少块.那边放多少块. 注意精度.不要每次用x*y/base算有多少块, ...

  10. Laravel 安装登录模块

    cmd打开项目目录,执行如下代码即可 php artisan make:auth url访问