【洛谷p1403 】【AHOI2005】约数研究
(有种失踪人口回归的感觉)
(不过好像没有人注意到我这个蒟蒻)
好的不管它啦
最近学数论比较多,所以可能会有好多好多的数论题???(不存在的)
行吧上算法标签:
数论 数论 数论
首先显然它求的是Σψ(i)i∈(1,n)下面补充关于ψ(i)的百度百科知识(或许有些奇怪……):
行吧那个长得像裤子的东西是求积(和西格玛差不多吧??)
接下来讲一下原理:
我们可以反过来考虑,显然如果分别求1-n中每个数的正约数个数,我们会炸掉的(tle喽),所以我们就反向思维,对于每个数i,1-n中都会有i,2i,3i,4i,……[n/i]*i([n/i]向下取整)个不同的因数,那么1-n中为i的个数的数就为n/i(向下取整)个,依据此,我们可以写出循环:
for(int i=;i<=n;i++)
ans+=n/i;
依次判断1-n有几个因数……好像没表达清楚(不管了详情见信息学奥赛一本通提高篇p382.4)
附ac代码:
#include<iostream>
using namespace std;
int n,ans;
int main()
{
cin>>n;
for(int i=;i<=n;i++)
ans+=n/i;
cout<<ans<<endl;
}
end-
【洛谷p1403 】【AHOI2005】约数研究的更多相关文章
- 洛谷——P1403 [AHOI2005]约数研究
P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工 ...
- 洛谷P1403 [AHOI2005] 约数研究 [数论分块]
题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...
- 洛谷 P1403 [AHOI2005]约数研究
怎么会有这么水的省选题 一定是个签到题. 好歹它也是个省选题,独立做出要纪念一下 很容易发现在1~n中,i的因子数是n / i 那就枚举每一个i然后加起来就OK了 #include<cstdio ...
- 【洛谷P1403】约数研究
题目大意:求\[\sum\limits_{i=1}^n\sum\limits_{d|i}1\] 题解:交换求和顺序即可. \[\sum\limits_{i=1}^n\sum\limits_{d|i}1 ...
- P1403 [AHOI2005]约数研究
原题链接 https://www.luogu.org/problemnew/show/P1403 这个好难啊,求约数和一般的套路就是求1--n所有的约数再一一求和,求约数又要用for循环来判断.... ...
- P1403 [AHOI2005]约数研究 题解
转载luogu某位神犇的题解QAQ 这题重点在于一个公式: f(i)=n/i 至于公式是怎么推出来的,看我解释: 1-n的因子个数,可以看成共含有2因子的数的个数+含有3因子的数的个数……+含有n因子 ...
- BZOJ 1968_P1403 [AHOI2005]约数研究--p2260bzoj2956-模积和∑----信息学中的数论分块
第一部分 P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一 ...
- LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...
- 洛谷P2054 [AHOI2005]洗牌(扩展欧几里德)
洛谷题目传送门 来个正常的有证明的题解 我们不好来表示某时刻某一个位置是哪一张牌,但我们可以表示某时刻某一张牌在哪个位置. 设数列\(\{a_{i_j}\}\)表示\(i\)号牌经过\(j\)次洗牌后 ...
- 洛谷P2542 [AHOI2005]航线规划(LCT,双连通分量,并查集)
洛谷题目传送门 太弱了不会树剖,觉得LCT好写一些,就上LCT乱搞,当LCT维护双连通分量的练手题好了 正序删边是不好来维护连通性的,于是就像水管局长那样离线处理,逆序完成操作 显然,每个点可以代表一 ...
随机推荐
- Cygwin、MinG、MSys区别与联系(转)
转自:https://www.biaodianfu.com/cygwin-ming-msys.html 什么是Cygwin? Cygwin,原Cygnus出品(已被红帽收购),目前是RedHat名下的 ...
- 最小二乘法拟合非线性函数及其Matlab/Excel 实现
1.最小二乘原理 Matlab直接实现最小二乘法的示例: close x = 1:1:100; a = -1.5; b = -10; y = a*log(x)+b; yrand = y + 0.5*r ...
- FJUT 倒水(倒水问题)题解
题意:开学了, fold拿着两个无刻度, 容量分别是5L和7L的量筒来问Anxdada, 说水是无限的, 并且可以无限次将杯子装满或者清空, 那怎么用这个两个量筒倒出恰好4L水了? 我说简单啊, 先装 ...
- Eclipse 创建maven项目 报错 one or more constraints have not been satisfied
首先 在 pom.xml > plugins 中添加 <plugin> <groupId>org.apache.maven.plugins</groupId> ...
- 51nod 1832 先序遍历与后序遍历(dfs+高精度)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1832 题意: 思路: 官方题解如下: 可以看一下这篇文章:https:/ ...
- PHP 内置函数fgets读取文件
php fgets()函数从文件指针中读取一行 语法: fgets(file,length) 参数 描述 file 必需.规定尧要读取的文件 length 可选 .规定尧都区的字节数.默认是102字 ...
- Jenkins参数化构建(一)之 Maven Command Line传递TestNG构建参数
1. Maven使用 -D参数名称 将参数传递至所运行项目 Maven指定TestNg.xml文件 clean test -DsuiteXmlFile=src/main/resources/testn ...
- JavaScript中 call和apply
call()方法和apply()方法的作用相同,他们的区别在于接收参数的方式不同. 对于call(),第一个参数是this值没有变化,变化的是其余参数都直接传递给函数.(在使用call()方法时,传递 ...
- Python pycharm 常用快捷键
快捷键 1.编辑(Editing) Ctrl + Space 基本的代码完成(类.方法.属性) Ctrl + Alt + Space 快速导入任意类 Ctrl + Shift + Enter 语句完成 ...
- PCA-主成分分析(Principal components analysis)
来自:刘建平 主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一. 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里 ...