【洛谷p1403 】【AHOI2005】约数研究
(有种失踪人口回归的感觉)
(不过好像没有人注意到我这个蒟蒻)
好的不管它啦
最近学数论比较多,所以可能会有好多好多的数论题???(不存在的)
行吧上算法标签:
数论 数论 数论
首先显然它求的是Σψ(i)i∈(1,n)下面补充关于ψ(i)的百度百科知识(或许有些奇怪……):
行吧那个长得像裤子的东西是求积(和西格玛差不多吧??)
接下来讲一下原理:
我们可以反过来考虑,显然如果分别求1-n中每个数的正约数个数,我们会炸掉的(tle喽),所以我们就反向思维,对于每个数i,1-n中都会有i,2i,3i,4i,……[n/i]*i([n/i]向下取整)个不同的因数,那么1-n中为i的个数的数就为n/i(向下取整)个,依据此,我们可以写出循环:
for(int i=;i<=n;i++)
ans+=n/i;
依次判断1-n有几个因数……好像没表达清楚(不管了详情见信息学奥赛一本通提高篇p382.4)
附ac代码:
#include<iostream>
using namespace std;
int n,ans;
int main()
{
cin>>n;
for(int i=;i<=n;i++)
ans+=n/i;
cout<<ans<<endl;
}
end-
【洛谷p1403 】【AHOI2005】约数研究的更多相关文章
- 洛谷——P1403 [AHOI2005]约数研究
P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工 ...
- 洛谷P1403 [AHOI2005] 约数研究 [数论分块]
题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...
- 洛谷 P1403 [AHOI2005]约数研究
怎么会有这么水的省选题 一定是个签到题. 好歹它也是个省选题,独立做出要纪念一下 很容易发现在1~n中,i的因子数是n / i 那就枚举每一个i然后加起来就OK了 #include<cstdio ...
- 【洛谷P1403】约数研究
题目大意:求\[\sum\limits_{i=1}^n\sum\limits_{d|i}1\] 题解:交换求和顺序即可. \[\sum\limits_{i=1}^n\sum\limits_{d|i}1 ...
- P1403 [AHOI2005]约数研究
原题链接 https://www.luogu.org/problemnew/show/P1403 这个好难啊,求约数和一般的套路就是求1--n所有的约数再一一求和,求约数又要用for循环来判断.... ...
- P1403 [AHOI2005]约数研究 题解
转载luogu某位神犇的题解QAQ 这题重点在于一个公式: f(i)=n/i 至于公式是怎么推出来的,看我解释: 1-n的因子个数,可以看成共含有2因子的数的个数+含有3因子的数的个数……+含有n因子 ...
- BZOJ 1968_P1403 [AHOI2005]约数研究--p2260bzoj2956-模积和∑----信息学中的数论分块
第一部分 P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一 ...
- LOJ #2185 / 洛谷 P3329 - [SDOI2015]约数个数和(莫比乌斯函数)
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \( ...
- 洛谷P2054 [AHOI2005]洗牌(扩展欧几里德)
洛谷题目传送门 来个正常的有证明的题解 我们不好来表示某时刻某一个位置是哪一张牌,但我们可以表示某时刻某一张牌在哪个位置. 设数列\(\{a_{i_j}\}\)表示\(i\)号牌经过\(j\)次洗牌后 ...
- 洛谷P2542 [AHOI2005]航线规划(LCT,双连通分量,并查集)
洛谷题目传送门 太弱了不会树剖,觉得LCT好写一些,就上LCT乱搞,当LCT维护双连通分量的练手题好了 正序删边是不好来维护连通性的,于是就像水管局长那样离线处理,逆序完成操作 显然,每个点可以代表一 ...
随机推荐
- [POI2011]Garbage 欧拉回路
[POI2011]Garbage 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2278 https://loj.ac/problem/216 ...
- centos7 mail
For anyone wondering how to read these messages one by one, you can just use 'mail' $ mail Then type ...
- K8S 安装笔记
1. 准备CentOS7环境 #关闭防火墙 # systemctl disable firewalld # systemctl stop firewalld #安装etcd, kubernetes(会 ...
- StringBuffer 清空StringBuffer的实例的三种方法
@Test public void testStringbuffer(){ //StringBuffer类没有clear方法,不过可以通过下面两种方法来清空一个StringBuffer的实例: Str ...
- Spring (一)
Spring是一个开源框架,是一个基于IOC和AOP来架构多层的JavaEE 架构 默认是单例模式 IOC就是 Inversion of Control public class Girl { pri ...
- git difftool和mergetool图形化
1.当然是先安装Beyond Compare3 (此处省略安装步骤,自行百度) 2.设置difftool git config --global diff.tool bc3 git config -- ...
- 获取 ip ( 第三方接口 )
搜狐IP地址查询接口(默认GBK):http://pv.sohu.com/cityjson 搜狐IP地址查询接口(可设置编码):http://pv.sohu.com/cityjson?ie=utf-8 ...
- linux c/c++ 文件是否存在
linux c/c++ 文件是否存在 #include <unistd.h> int FileExist(const char* fname) { return access(fname, ...
- P359 usestock2.cpp
IDE Qt Creator 4.0.3 stock.h #ifndef STOCK_H #define STOCK_H #include <string> class Stock //类 ...
- Lambda语法篇
函数式接口 函数式接口(functional interface 也叫功能性接口,其实是同一个东西).简单来说,函数式接口是只包含一个方法的接口. Lambda语法 包含三个部分 一个括号内用逗号分隔 ...