Codefores 1151E Number of Components
大意:给定n元素序列$a$, $1\le a_i \le n$, 定义函数$f(l,r)$表示范围在$[l,r]$以内的数构成的连通块个数, 求$\sum\limits_{i=1}^{n}\sum\limits_{j=i}^{n}f(i,j)$
对于序列$a$中一个区间$[l,r]$, 假设最小值$mi$, 最大值$ma$, 它要想构成一个连通块的充要条件是$a[l-1],a[r+1]$不在$[mi,ma]$范围内, 可以得到贡献为$mi(n-ma+1)$. 但是显然不能暴力枚举所有区间, 我们可以枚举合法区间的右端点来计算.
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 1e6+10;
int n, m, k, t;
int a[N]; int main() {
scanf("%d", &n);
REP(i,1,n) scanf("%d", a+i);
ll ans = (ll)a[n]*(n-a[n]+1);
REP(i,1,n-1) {
if (a[i]<a[i+1]) ans+=(ll)a[i]*(a[i+1]-a[i]);
else ans+=(ll)(a[i]-a[i+1])*(n-a[i]+1);
}
printf("%lld\n", ans);
}
Codefores 1151E Number of Components的更多相关文章
- CodeForces 1151E Number of Components
题目链接:http://codeforces.com/problemset/problem/1151/E 题目大意: n个人排成一个序列,标号为 1~n,第 i 个人的学习成绩为 ai,现在要选出学习 ...
- 【CF1151E】Number of Components
[CF1151E]Number of Components 题面 CF 题解 联通块个数=点数-边数. 然后把边全部挂在较小的权值上. 考虑从小往大枚举左端点,等价于每次删掉一个元素,那么删去点数,加 ...
- cf1151e number of components
很常见的思想:将整体求改为统计每个部分的贡献 本题中统计[l, r]时, 每个连通块有一个重要特征, 最右端的数在[l,r]中而下一个数不在(好像是句废话 那么我们分别考虑每个点对连通块的贡献, 即它 ...
- [CF1303F] Number of Components - 并查集,时间倒流
有一个 \(n \times m\) 矩阵,初态下全是 \(0\). 如果两个相邻元素(四连通)相等,我们就说它们是连通的,且这种关系可以传递. 有 \(q\) 次操作,每次指定一个位置 \((x_i ...
- Codeforces1303F Number of Components
Description link 题意:给一个全\(0\)矩阵,每次支持一个修改,修改不还原(这要是还原了不就成\(A\)题了) 然后询问每一次修改完了当前矩阵的连通块个数 每一个修改的值单调不降 修 ...
- Codeforces 1270H - Number of Components(线段树)
Codeforces 题目传送门 & 洛谷题目传送门 首先需发现一个性质,那就是每一个连通块所对应的是一个区间.换句话说 \(\forall l<r\),若 \(l,r\) 在同一连通块 ...
- [翻译]Writing Custom Report Components 编写自定义报表组件
摘要:简单介绍了如何编写一个FastReport的组件,并且注册到FastReport中使用. Writing Custom Report Components 编写自定义报表组件 FastRep ...
- OpenCV人脸识别Eigen算法源码分析
1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...
- SDWebImage源码解读_之SDWebImageDecoder
第四篇 前言 首先,我们要弄明白一个问题? 为什么要对UIImage进行解码呢?难道不能直接使用吗? 其实不解码也是可以使用的,假如说我们通过imageNamed:来加载image,系统默认会在主线程 ...
随机推荐
- 如何在gvim中安装autoproto自动显示函数原型
cankao: http://www.vim.org/scripts/script.php?script_id=1553 注意, 在gvim中执行的命令, :foo和:!foo 的区别, 跟vim一样 ...
- 牛客竞赛&&mjt的毒瘤赛
题目链接 https://ac.nowcoder.com/acm/contest/368/F 思路 询问可以离线. 然后每个节点上建32个权值线段树(权值不大,其实只要20颗) 记录每一位权值为x(如 ...
- 记一次oracle创建一个新数据库,并导入正式环境数据库备份的dmp包过程
背景:正式环境oracle数据库定时用exp备份一个dmp包,现在打算在一台机器上创建一个新数据库,并导入这个dmp包. 1.创建数据库 开始 -> 所有程序 -> Oracle -> ...
- 今天就整一个bug了
BeanPostProcessor加载次序及其对Bean造成的影响分析 SSM整合出现not found for dependency: expected at least 1 bean which ...
- 在Mac OSX下安装Microsoft Calibri字体
参考: Where can I find default Microsoft fonts Calibri, Cambria? 在Mac OSX下安装Microsoft Calibri字体 1.下载: ...
- 最简单的服务器和客户机(python3的编码与解码问题)
在学习python的过程中,我越来越感觉到python2和python3之间有很多不同点,最近发现的一点就是编码问题. 在代码清单14-1和14-2中,因为作者是用python2来写得,然后我是用py ...
- 1st,Python基础——01
1 Python介绍 2 Python发展史 3 Python2 or 3? 4 Python安装 就不写了,各路大牛的博客都很详细. 5 Hello World程序 #!/usr/bin/env p ...
- 数据库无法打开到SQL Server连接
今天打开数据库,发现连接不上,弹出错误提示: 打开SQLServer Configuration Manager,发现SQL Server状态已经停止,双击启动弹出错误提示: 打开SQL Server ...
- Git 中 pull 和 clone 的区别
git pull git clone clone 是本地没有 repository 时,将远程 repository 整个下载过来. pull 是本地有 repository 时,将远程 reposi ...
- 常见的Java面试题及答案整理
1. 基础篇 1. 面向对象特征:封装,继承,多态和抽象 封装封装给对象提供了隐藏内部特性和行为的能力.对象提供一些能被其他对象访问的方法来改变它内部的数据.在 Java 当中,有 3 种修饰符: p ...