含【最小生成树Prim】模板。
Prim复杂度为$O(n^2),适用于稠密图,特别是完全图的最小生成树的求解。
 
Desert King
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions:31622   Accepted: 8670

Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

Source

题意:

有$n$个城市,每个城市有对应的坐标和海拔。两个城市之间的距离是坐标的距离,路的花费是海拔之差。

现在要建$n-1$条路,使得花费之和比距离之和最小。

思路:

一道0/1分数规划的题目。

0/1分数规划模型指:给定整数$a_1,a_2,...,a_n$,以及$b_1,b_2,...,b_n$,求一组解$x_i(1\leq i \leq n,x_i=0或1)$,

使得$\frac{\sum_{i=1}^{n} a_i*x_i}{\sum_{i=1}^{n}b_i*x_i}$最大化。

这种类型的题目我们可以通过二分答案来做。

因为如果对于$mid$,存在一组解,使得$\sum_{i=1}^{n}(a_i - mid * b_i) * x_i \geq 0$那么我们可以变形得到

存在一组解,使得$\frac{\sum_{i=1}^{n} a_i*x_i}{\sum_{i=1}^{n}b_i*x_i} \geq mid$

也就是说,$mid$比我们实际的答案要小。

反之,如果对于任意一组解,都有$\sum_{i=1}^{n}(a_i - mid * b_i) * x_i <0$那么我们可以得到

任意的解都有$\frac{\sum_{i=1}^{n} a_i*x_i}{\sum_{i=1}^{n}b_i*x_i} < mid$

也就是说,$mid$比我们实际的答案要大。

所以我们每次只需要计算$\sum_{i=1}^{n}(a_i - mid * b_i)*x_i$的最大值,如果最大值非负,令$st = mid$,否则$ed = mid$

对于这道题,也是类似。我们二分最终的答案。

每一次重新建图,城市和城市之间的边变为$cost - mid * length$

然后在新图上跑最小生成树。

如果最小生成树的值非负,说明实际答案比$mid$要大,令$st = mid$

由于这道题是完全图,而点的个数只有$1000$所以用prim比较好

WA了好久,后来发现是对d赋初值的问题。

对于double的数组赋初值$+\infty$不能用$0x3f$而应该用$0x7f$,就改了这里就过了。

 #include<iostream>
//#include<bits/stdc++.h>
#include<cstdio>
#include<cmath>
//#include<cstdlib>
#include<cstring>
#include<algorithm>
//#include<queue>
#include<vector>
//#include<set>
//#include<climits>
//#include<map>
using namespace std;
typedef long long LL;
#define N 100010
#define pi 3.1415926535
#define inf 0x3f3f3f3f const int maxn = ;
const double eps = 1e-;
int n;
struct city{
double x, y, height;
}c[maxn];
double dist[maxn][maxn], cost[maxn][maxn], g[maxn][maxn]; double get_dist(int i, int j)
{
return sqrt((c[i].x - c[j].x) * (c[i].x - c[j].x) + (c[i].y - c[j].y) * (c[i].y - c[j].y));
} double d[maxn];
bool vis[maxn];
void prim()
{
memset(d, 0x7f, sizeof(d));
memset(vis, , sizeof(vis));
/*for(int i = 1; i <= n; i++){
d[i] = (double)inf;
vis[i] = 0;
}*/
d[] = ;
for(int i = ; i <= n; i++){
int x = ;
for(int j = ; j <= n; j++){
if(!vis[j] && (x == || d[j] < d[x]))x = j;
}
vis[x] = ;
for(int y = ; y <= n; y++){
if(!vis[y])d[y] = min(d[y], g[x][y]);
}
}
} void getgraph(double mid)
{
for(int i = ; i <= n; i++){
for(int j = i; j <= n; j++){
g[i][j] = g[j][i] = cost[i][j] - mid * dist[i][j];
}
}
} bool check(double mid)
{
getgraph(mid);
prim();
double res = ;
for(int i = ; i <= n; i++){
res += d[i];
}
return res >= ;
} int main()
{
while(scanf("%d", &n) != EOF && n){
for(int i = ; i <= n; i++){
scanf("%lf%lf%lf", &c[i].x, &c[i].y, &c[i].height);
} for(int i = ; i <= n; i++){
for(int j = i; j <= n; j++){
dist[i][j] = dist[j][i] = get_dist(i, j);
cost[i][j] = cost[j][i] = fabs(c[i].height - c[j].height);
}
}
double st = 0.0, ed = 100.0;
while(ed - st >= eps){
double mid = (st + ed) / ;
if(check(mid))st = mid;
else ed = mid;
}
printf("%.3f\n", ed);
} return ;
}

poj2728 Desert King【最优比率生成树】【Prim】【0/1分数规划】的更多相关文章

  1. POJ2728 Desert King 最优比率生成树

    题目 http://poj.org/problem?id=2728 关键词:0/1分数规划,参数搜索,二分法,dinkelbach 参考资料:http://hi.baidu.com/zzningxp/ ...

  2. POJ2728 Desert King —— 最优比率生成树 二分法

    题目链接:http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Subm ...

  3. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  4. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  5. 【POJ2728】Desert King 最优比率生成树

    题目大意:给定一个 N 个点的无向完全图,边有两个不同性质的边权,求该无向图的一棵最优比例生成树,使得性质为 A 的边权和比性质为 B 的边权和最小. 题解:要求的答案可以看成是 0-1 分数规划问题 ...

  6. Desert King(最优比率生成树)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22717   Accepted: 6374 Desc ...

  7. POJ 2728 Desert King(最优比率生成树, 01分数规划)

    题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...

  8. POJ 2728 Desert King (最优比率树)

    题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目 ...

  9. poj-2728Desert King(最优比率生成树)

    David the Great has just become the king of a desert country. To win the respect of his people, he d ...

  10. POJ 2728 Desert King (最优比例生成树)

    POJ2728 无向图中对每条边i 有两个权值wi 和vi 求一个生成树使得 (w1+w2+...wn-1)/(v1+v2+...+vn-1)最小. 采用二分答案mid的思想. 将边的权值改为 wi- ...

随机推荐

  1. 《Unix&Linux大学教程》学习笔记七:进程与作业控制

    1:进程:一个内存中的程序+程序所需数据+管理程序的各种状态信息. 2:进程由内核进行管理,内核使用调度器,给予进程一个时间片来运行,然后切换到下一个进程. 3:进程分叉 fork :创建一个子进程 ...

  2. MySQL空间索引简单使用

    简述 MySQL在5.7之后的版本支持了空间索引,而且支持OpenGIS几何数据模型.国内的MySQL相关的书籍都比较老了,在这方面有详细描述的还没有见过.有一本比较新的PostgreSQL的数据介绍 ...

  3. ORACLE物化视图(物理视图)

    百度文库 http://wenku.baidu.com/view/f78f55c68bd63186bcebbc4b.html ORACLE物化视图 一.------------------------ ...

  4. latex学习(四)tlmgr

    官网说明文档:https://tug.org/texlive/doc/tlmgr.html,2018版已经被冻结了,所以tlmgr也不会更新了,要等到下一个大的版本才能更新. 1.用tlmgr查看已经 ...

  5. 拯救安卓手机的数据(无法进入系统只能打开recovery)

    这里不得不赞一个谷歌的开放,如果不是这样读取数据就很糟糕了,记得一千带着我的mac本子到苹果店,那个所谓的“天才”就说苹果的数据无法读取,我了个艹,为了避免丢失你必须得准备一个TM.好了废话不多说,进 ...

  6. 01——Introduction to Android介绍

    Introduction to Android Android provides a rich application framework that allows you to build innov ...

  7. zookeeper频繁异常问题分析

    Reference: https://blog.csdn.net/xjping0794/article/details/77784171 1.1            操作系统信息1.1.1      ...

  8. java框架篇---hibernate之连接池

    Hibernate支持第三方的连接池,官方推荐的连接池是C3P0,Proxool,以及DBCP.在配置连接池时需要注意的有三点: 一.Apche的DBCP在Hibernate2中受支持,但在Hiber ...

  9. C++ 智能指针六

    /* 智能指针unique_ptr */ #include <iostream> #include <string> #include <memory> #incl ...

  10. Oracle Grid 11.2.0.4 安装是出现“[INS-41112] Specified network interface doesnt maintain connectivity across cluster”错误

    最新文章:Virson's Blog 安装Oracle 11.2.0.4 的RAC,在Grid 安装时报错: [INS-41112]Specified network interface doesnt ...