• Make sure you have published the friendlyhello image you created by pushing it to a registry. We’ll use that shared image here.

  • Be sure your image works as a deployed container. Run this command, slotting in your info for usernamerepo, and tagdocker run -p 80:80 username/repo:tag, then visit http://localhost/.

scale our application and enable load-balancing. To do this, we must go one level up in the hierarchy of a distributed application: the service.

  • Stack
  • Services (you are here)
  • Container (covered in part 2)

About services

In a distributed application, different pieces of the app are called “services.”

For example, if you imagine a video sharing site, it probably includes a service for storing application data in a database, a service for video transcoding in the background after a user uploads something, a service for the front-end, and so on.

Services are really just “containers in production.”

A service only runs one image, but it codifies the way that image runs—what ports it should use, how many replicas of the container should run so the service has the capacity it needs, and so on.

Scaling a service changes the number of container instances running that piece of software, assigning more computing resources to the service in the process.

Luckily it’s very easy to define, run, and scale services with the Docker platform – just write a docker-compose.yml file.

docker-compose.yml file

docker-compose.yml file is a YAML file that defines how Docker containers should behave in production.

Be sure you have pushed the image you created in Part 2 to a registry, and update this .yml by replacingusername/repo:tag with your image details.

version: "3"
services:
web:
# replace username/repo:tag with your name and image details
image: username/repo:tag
deploy:
replicas: 5
resources:
limits:
cpus: "0.1"
memory: 50M
restart_policy:
condition: on-failure
ports:
- "80:80"
networks:
- webnet
networks:
webnet:

This docker-compose.yml file tells Docker to do the following:

  • Pull the image we uploaded in step 2 from the registry.

  • Run 5 instances of that image as a service called web, limiting each one to use, at most, 10% of the CPU (across all cores), and 50MB of RAM.

  • Immediately restart containers if one fails.

  • Map port 80 on the host to web’s port 80.

  • Instruct web’s containers to share port 80 via a load-balanced network called webnet. (Internally, the containers themselves will publish to web’s port 80 at an ephemeral port.)

  • Define the webnet network with the default settings (which is a load-balanced overlay network).

Run new load-balanced app

Before we can use the docker stack deploy command we’ll first run:

docker swarm init

If you don’t run docker swarm init you’ll get an error that “this node is not a swarm manager.” 

Now let’s run it. You have to give your app a name. Here, it is set to getstartedlab:

docker stack deploy -c docker-compose.yml getstartedlab

Our single service stack is running 5 container instances of our deployed image on one host

Get the service ID for the one service in our application:

docker service ls
You’ll see output for the web service, prepended with your app name. 
If you named it the same as shown in this example, the name will be getstartedlab_web.
The service ID is listed as well, along with the number of replicas, image name, and exposed ports. A single container running in a service is called a task.
Tasks are given unique IDs that numerically increment, up to the number of replicas you defined indocker-compose.yml. List the tasks for your service:
docker service ps getstartedlab_web

Tasks also show up if you just list all the containers on your system, though that will not be filtered by service:

docker container ls -q

You can run curl -4 http://localhost several times in a row, or go to that URL in your browser and hit refresh a few times.

Either way, you’ll see the container ID change, demonstrating the load-balancing; with each request, one of the 5 tasks is chosen, in a round-robin fashion, to respond. The container IDs will match your output from the previous command (docker container ls -q).

Running Windows 10?

Windows 10 PowerShell should already have curl available, but if not you can grab a Linux terminal emulater like Git BASH, or download wget for Windowswhich is very similar.

Slow response times?

Depending on your environment’s networking configuration, it may take up to 30 seconds for the containers to respond to HTTP requests. This is not indicative of Docker or swarm performance, but rather an unmet Redis dependency that we will address later in the tutorial. For now, the visitor counter isn’t working for the same reason; we haven’t yet added a service to persist data.

Scale the app

You can scale the app by changing the replicas value in docker-compose.yml, saving the change, and re-running the docker stack deploy command:

docker stack deploy -c docker-compose.yml getstartedlab

Docker will do an in-place update, no need to tear the stack down first or kill any containers.

Now, re-run docker container ls -q to see the deployed instances reconfigured. If you scaled up the replicas, more tasks, and hence, more containers, are started.

Swarm介绍

Take down the app and the swarm

  • Take the app down with docker stack rm:

docker stack rm getstartedlab 
  • Take down the swarm.
docker swarm leave --force

Compose files like this are used to define applications with Docker, and can be uploaded to cloud providers using Docker Cloud, or on any hardware or cloud provider you choose with Docker Enterprise Edition.

To recap, while typing docker run is simple enough, the true implementation of a container in production is running it as a service. Services codify a container’s behavior in a Compose file, and this file can be used to scale, limit, and redeploy our app. Changes to the service can be applied in place, as it runs, using the same command that launched the service: docker stack deploy.

docker stack ls                                            # List stacks or apps
docker stack deploy -c <composefile> <appname> # Run the specified Compose file
docker service ls # List running services associated with an app
docker service ps <service> # List tasks associated with an app
docker inspect <task or container> # Inspect task or container
docker container ls -q # List container IDs
docker stack rm <appname> # Tear down an application
docker swarm leave --force # Take down a single node swarm from the manager

  

Docker2之Service的更多相关文章

  1. docker2

    https://github.com/docker/distribution daocloud 数人云 时速云 http://jpetazzo.github.io/2014/06/23/docker- ...

  2. centos7下安装docker(23.docker-swarm之如何访问service)

    如何访问service呢? 为了便于分析,我们重新部署web-server 1.删除service 执行命令docker service rm web-server docker service rm ...

  3. 笔记-docker-2安装(centos6.5环境)

    笔记-docker-2安装(centos6.5环境) 1.      centos6.5安装docker 1.1.    升级内核 安装docker,官方文档要求linux kernel至少3.8以上 ...

  4. 通过AngularJS实现前端与后台的数据对接(二)——服务(service,$http)篇

    什么是服务? 服务提供了一种能在应用的整个生命周期内保持数据的方法,它能够在控制器之间进行通信,并且能保证数据的一致性. 服务是一个单例对象,在每个应用中只会被实例化一次(被$injector实例化) ...

  5. Azure Service Fabric 开发环境搭建

    微服务体系结构是一种将服务器应用程序构建为一组小型服务的方法,每个服务都按自己的进程运行,并通过 HTTP 和 WebSocket 等协议相互通信.每个微服务都在特定的界定上下文(每服务)中实现特定的 ...

  6. 无法向会话状态服务器发出会话状态请求。请确保 ASP.NET State Service (ASP.NET 状态服务)已启动,并且客户端端口与服务器端口相同。如果服务器位于远程计算机上,请检查。。。

    异常处理汇总-服 务 器 http://www.cnblogs.com/dunitian/p/4522983.html 无法向会话状态服务器发出会话状态请求.请确保 ASP.NET State Ser ...

  7. C#创建、安装、卸载、调试Windows Service(Windows 服务)的简单教程

    前言:Microsoft Windows 服务能够创建在它们自己的 Windows 会话中可长时间运行的可执行应用程序.这些服务可以在计算机启动时自动启动,可以暂停和重新启动而且不显示任何用户界面.这 ...

  8. java中Action层、Service层和Dao层的功能区分

    Action/Service/DAO简介: Action是管理业务(Service)调度和管理跳转的. Service是管理具体的功能的. Action只负责管理,而Service负责实施. DAO只 ...

  9. org.jboss.deployment.DeploymentException: Trying to install an already registered mbean: jboss.jca:service=LocalTxCM,name=egmasDS

    17:34:37,235 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-0.0.0.0-8080 17:34:37,281 INFO [ ...

随机推荐

  1. windows下配置lua环境

    1.进入lua官网http://www.lua.org/ 2.点击download 3.点击get a binary 4.点击[Lua - joedf's Builds] 5.选择适合自己的版本下载, ...

  2. SLAM学习笔记 - 视觉SLAM方法资源汇总

    工具类: ros框架 linux系列教程     vim Eigen     Eigen快速入门 Pangolin  Pangolin安装与使用 数据集: TUM         数据格式 提供pyt ...

  3. python 测试文件或者文件目录是否存在 测试文件类型,获取文件大小,获取修改日期

    ----测试一个文件或目录是否存在 >>> import os >>> os.path.exists('/etc/passwd') True >>> ...

  4. requests 学习笔记

    除了get 方式外 还有post 等等 注意字典里值为 None 的键都不会被添加到 URL 的查询字符串里 import requests getpara = {"key1":& ...

  5. java 泛型E T ?的区别

    Java泛型中的标记符含义:  E - Element (在集合中使用,因为集合中存放的是元素) T - Type(Java 类) K - Key(键) V - Value(值) N - Number ...

  6. 【转载】unittest参数化(paramunittest)

    前言 paramunittest是unittest实现参数化的一个专门的模块,可以传入多组参数,自动生成多个用例 前面讲数据驱动的时候,用ddt可以解决多组数据传入,自动生成多个测试用例.本篇继续介绍 ...

  7. LDA模型了解及相关知识

    什么是LDA? LDA是基于贝叶斯模型的,涉及到贝叶斯模型离不开“先验分布”,“数据(似然)”和"后验分布"三块.贝叶斯相关知识:先验分布 + 数据(似然)= 后验分布. 贝叶斯模 ...

  8. Linux服务器---邮件服务spam

    安装spam spam(SpamAssassin)利用perl来进行文字分析,他会检测邮件的标题.内容.送信人,这样就可以过滤出垃圾邮件 1.安装spam.由于spam的依赖太多,用户一定要使用yum ...

  9. Linux 配置 JDK

    1. 上传 JDK 2. 解压文件 tar -xvf 文件名 3. 配置环境变量: 指令 vim /etc/profile 以上格式是不变的,使用时只改变 JAVA_HOME 和 JAVA_BIN 的 ...

  10. django框架基本介绍

    一.mvc和mtv 1.mvc介绍 MVC,全名是Model View Controller,是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model).视图(View)和控制器( ...