HDU 5976 Detachment(拆分)

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

 

Problem Description - 题目描述

  In a highly developed alien society, the habitats are almost infinite dimensional space.
  In the history of this planet,there is an old puzzle.
  You have a line segment with x units’ length representing one dimension.The line segment can be split into a number of small line segments: a1,a2, … (x= a1+a2+…) assigned to different dimensions. And then, the multidimensional space has been established. Now there are two requirements for this space:
    1.Two different small line segments cannot be equal ( ai≠aj when i≠j).
    2.Make this multidimensional space size s as large as possible (s= a1∗a2*...).Note that it allows to keep one dimension.That's to say, the number of ai can be only one.
  Now can you solve this question and find the maximum size of the space?(For the final number is too large,your answer will be modulo 10^9+7)
在一个高度发达的外星文明中,有着近乎无限维度的生存空间。
在这颗星球的历史中,有道古老的谜题。
你有一条长x个单位长度的线段表示一个维度。这条线段可以被拆分为若干小线段:a1,a2, … (x= a1+a2+…)并分配为不同的维度。然后,多维空间就建立起来了。现在,这个空间有两个限制:
.两个不同的小线段不能相等( ai≠aj when i≠j)。
.多维空间的大小s要尽可能大(s= a1∗a2*...)。注意,各维度只能保持一种。也就是说,ai的值必须唯一。
现在的你能解决这个问题并找出最大的空间吗?(结果可能很大,输出模10^+)

CN

Input - 输入
  The first line is an integer T,meaning the number of test cases.
  Then T lines follow. Each line contains one integer x.
  1≤T≤10^6, 1≤x≤10^9
第一行为一个整数T,描述测试用例的数量。
随后T行。每行有一个整数x。
≤T≤^, ≤x≤^

CN

Output - 输出

  Maximum s you can get modulo 10^9+7. Note that we wants to be greatest product before modulo 10^9+7.
s的最大值需要模10^+。注意,模10^+7是在获得最大乘积后。

CN

Sample Input - 输入样例

1
4

Sample Output - 输出样例

4

题解
  先猜一发最优策略:2+3+4+5+6+……

  然后再猜一发对于剩下数的分配策略:每次从后往前,对每个数+1。

  接着就发现似乎策略就是这样了。

  后面需要做的处理:求前n项和,求前n项积。

  最后遇到(a % mod)/(b % mod)的时候需要用逆元。

  把(a/b)%mod转化为(a * inv b)%mod 不嫌弃速度的话可以用费马小定理:

    mod为质数时,inv a = a^(mod - 2)

  或者用其他方法…………

代码 C++

 #include <cstdio>
#include <algorithm>
#define mod 1000000007
#define mx 44722
__int64 mul[mx] = { }, sum[mx];
__int64 qMod(__int64 a, int n){
__int64 opt = ;
while (n){
if (n & ) opt = (opt*a) % mod;
n >>= ;
a = (a*a) % mod;
}
return opt;
}
__int64 lr(int l, int r){//[l, r]
return (mul[r] * qMod(mul[l - ], mod - )) % mod;
}
void rdy(){
int i, j;
for (i = , j = ; i < mx; ++i, ++j){
sum[i] = j + sum[i - ];
mul[i] = (j * mul[i - ]) % mod;
}
}
int main(){
rdy();
int t, len, w, l, r;
__int64 x, opt;
scanf("%d", &t);
while (t--){
scanf("%I64d", &x);
if (x < ) opt = x;
else{
len = std::upper_bound(sum, sum + mx, x) - sum - ;
r = len + (x - sum[len]) / len;
w = (x - sum[len]) % len;
opt = lr(r - len + , r - w);
if (w) opt *= lr(r + - w, r + ), opt %= mod;
}
printf("%I64d\n", opt);
}
return ;
}

HDU 5976 Detachment(拆分)的更多相关文章

  1. HDU 5976 Detachment 打表找规律

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5976 Detachment Time Limit: 4000/2000 MS (Java/Other ...

  2. HDU 5976 Detachment 【贪心】 (2016ACM/ICPC亚洲区大连站)

    Detachment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  3. hdu 5976 Detachment

    Detachment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  4. hdu 5976 Detachment 脑洞题 猜结论

    题目链接 题意 将\(x\)拆成\(a_1+a_2+...+\)的形式,且\(a_1\lt a_2\lt...\),使得\(a_1*a_2*...\)取到最大值 思路 大胆猜结论. 首先拆分的形式中肯 ...

  5. HDU - 5976 Detachment(逆元)

    题意:将一个数x拆成a1+a2+a3+……,ai不等于aj,求最大的a1*a2*a3*……. 分析: 1.预处理前缀和前缀积,因为拆成1对乘积没有贡献,所以从2开始拆起. 2.找到一个id,使得2+3 ...

  6. HDU 5976 数学,逆元

    1.HDU 5976 Detachment 2.题意:给一个正整数x,把x拆分成多个正整数的和,这些数不能有重复,要使这些数的积尽可能的大,输出积. 3.总结:首先我们要把数拆得尽可能小,这样积才会更 ...

  7. HDU 1028(数字拆分 分治)

    题意是求所给的数能够被拆分成的不同组合数目. 方法有三种: 一.完全背包. 限制条件:所用数字不大于 n. 目标:求分解种数(组合出 n 的方法数). 令 dp[ i ][ j ] = x 表示 用前 ...

  8. HDU 5976 数学

    Detachment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  9. HDU 1028 整数拆分 HDU 2082 找单词 母函数

    生成函数(母函数) 母函数又称生成函数.定义是给出序列:a0,a1,a2,...ak,...an, 那么函数G(x)=a0+a1*x+a2*x2+....+ak*xk +...+an* xn  称为序 ...

随机推荐

  1. ubuntu 换源过程中遇到的坑(一):Could not resolve 'mirrors.aliyun.com'

    执行更新数据(sudo apt-get update)提示: Err http://mirrors.aliyun.com trusty Release.gpg Could not resolve 'm ...

  2. sqoop使用经验总结及问题汇总

    问题导读1.导入数据到HDFS,需要注意什么?2.在测试sqoop语句的时候,如何限制记录数量?3.sqoop导入时什么情况下会多导入一条数据? 一.sqoop 导入数据到HDFS注意事项 分割符的方 ...

  3. mongodb安全权限设定

    mongodb安全权限设定 如何防范此类攻击? 做好访问认证.打开你的MongoDB配置文件(.conf),设置为auth=true 做好防火墙设置.建议管理者关闭27017端口的访问. Bind_i ...

  4. 如何使用Linux 命令more 查看文本文件

    Linux 下有很多实用工具可以让你在终端界面查看文本文件.其中一个就是 more. more 跟我之前另一篇文章里写到的工具 —— less 很相似.它们之间的主要不同点在于 more 只允许你向前 ...

  5. vue打包报内存溢出

    vue-cli 构建的项目:package.json 文件里修改: "build": "node build/build.js" 修改为: "buil ...

  6. 为什么List.add()所增加的数据都是一样的

    1. 先上代码: List<Person> list = new ArrayList<>(); Person p = new Person(); try { Class.for ...

  7. javaweb笔记—01(编程英语、常识、Tomcat配置问题)

    第一部分: 编程英语: legal:adj. 法律的:合法的:法定的 Userful :出版商  sponsor: n. 赞助者:主办者:保证人 | vt. 赞助:发起 essential:n. 本质 ...

  8. spring总结之三(依赖注入)

    DI(重要):依赖注入(Dependency Injection).一般情况下,一个类不可能独立完成一个复杂的业务,需要多个类合作共同完成,需要在类中调用其它类的方法,就要给对象赋值,程序在执行过程中 ...

  9. django crontab 定时任务

    分 时 日 月 周 命令(最好用绝对路径)比如: * * * * * rm -fr /mnt/* //每分钟执行一次对/mnt目录下文件的删除*/2 * * * * rm -fr /mnt/* //每 ...

  10. Django Form&ModelForm

    ModelForm: 首先导入所需模块 from django.forms import ModelFormfrom django.forms import widgets as form_widge ...