Awesome Torch
Awesome Torch
This blog from:
A curated list of awesome Torch tutorials, projects and communities.
Table of Contents
Tutorials
- Applied Deep Learning for Computer Vision with Torch CVPR15 Tutorial [Slides]
- Machine Learning with Torch for IPAM Summer School on Deep Learning. [Code]
- Oxford Computer Science - Machine Learning 2015
- Implementing LSTMs with nngraph
- Community Wiki (Cheatseet) for Torch
- Demos & Turorials for Torch
- Learn Lua in 15 Minutes
- Torch Starter
Model Zoo
Codes and related articles. (#)
means authors of code and paper are different.
Recurrent Networks
- Learning Simple Algorithms from Examples
- Wojciech Zaremba, Tomas Mikolov, Armand Joulin, Rob Fergus, Learning Simple Algorithms from Examples, arXiv:1511.07275 [Paper]
- SCRNN (Structurally Constrained Recurrent Neural Network)
- Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, Marc'Aurelio Ranzato, Learning Longer Memory in Recurrent Neural Networks, arXiv:1406.1078 [Paper]
- Tree-LSTM (Tree-structured Long Short-Term Memory networks)
- Kai Sheng Tai, Richard Socher, Christopher D. Manning, Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, ACL 2015 [Paper]
- LSTM language model with CNN over characters
- Yoon Kim, Yacine Jernite, David Sontag, Alexander M. Rush, Character-Aware Neural Language Models, AAAI 2016, [Paper]
- LSTM, GRU, RNN for character-level language (char-rnn), word-rnn
- Andrej Karpathy, Justin Johnson, Li Fei-Fei, Visualizing and Understanding Recurrent Networks, ICLR 2016, [Paper]
- LSTM for word-level language model
- Wojciech Zaremba, Ilya Sutskever, Oriol Vinyal, Recurrent Neural Network Regularization, arXiv:1409.2329 [Paper]
- LSTM
- Wojciech Zaremba, Ilya Sutskever, Learning to Execute, arXiv:1410.4615 [Paper]
- NeuralTalk2 (Show and Tell)
- (#) Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan, Show and Tell: A Neural Image Caption Generator, CVPR 2015 [Paper]
- Seq2Seq
- (#) Ilya Sutskever, Oriol Vinyals, Quoc V. Le, Sequence to Sequence Learning with Neural Networks, NIPS 2014 [Paper]
- sentence2vec
- (#) Ilya Sutskever, Oriol Vinyals, Quoc V. Le, Sequence to Sequence Learning with Neural Networks, NIPS 2014 [Paper]
- LSTM (Sequence to Sequence Learning with Neural Networks)
- (#) Ilya Sutskever, Oriol Vinyals, Quoc V. Le, Sequence to Sequence Learning with Neural Networks, NIPS 2014 [Paper]
- Grid LSTM
- (#) Nal Kalchbrenner, Ivo Danihelka, Alex Graves, Grid Long Short-Term Memory, arXiv:1507.01526, [Paper]
- Recurrent Visual Attention Model
- (#) Volodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu, Recurrent Models of Visual Attention, NIPS 2014 [Paper]
- DRAW (Deep Recurrent Attentive Writer)
- (#) Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, Daan Wierstra, DRAW: A Recurrent Neural Network For Image Generation, arXiv:1502.04623 [Paper]
- Pixel rnn
- (#) Aaron van den Oord, Nal Kalchbrenner, Koray Kavukcuoglu, Pixel Recurrent Neural Networks, arXiv:1601.06759 [Paper]
- Deeper LSTM+ normalized CNN for Visual Question Answering
- Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, Devi Parikh, VQA: Visual Question Answering, arXiv:1505.00468, [Paper]
- CTCSpeechRecognition
- Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Hannun, Billy Jun, Patrick LeGresley, Libby Lin, Sharan Narang, Andrew Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun Zhan, Zhenyao Zhu, Deep Speech 2: End-to-End Speech Recognition in English and Mandarin, arXiv:1512.02595, [Paper]
- DenseCap
- Justin Johnson, Andrej Karpathy, Li Fei-Fei, DenseCap: Fully Convolutional Localization Networks for Dense Captioning, CVPR 2016, [Paper]
- Sequence-to-Sequence Learning with Attentional Neural Networks
- (#) Minh-Thang Luong, Hieu Pham, Christopher D. Manning, Effective Approaches to Attention-based Neural Machine Translation, EMNLP 2015, [Paper]
- Recurrent Batch Normalization
- (#) Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, Aaron Courville, Recurrent Batch Normalization, arXiv:1603.09025, [Paper]
- End-to-End Generative Dialogue
- Colton Gyulay, Michael Farrell, * End-to-End Generative Dialogue*, [Paper]
- ActivityNet
- Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem and Juan Carlos Niebles, Activitynet: A large-scale video benchmark for human activity understanding, CVPR 2015, [Paper]
- SCRNNs
- Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, Marc'Aurelio Ranzato, Learning Longer Memory in Recurrent Neural Networks, arXiv:1412.7753, [Paper]
- Hierarchical Question-Image Co-Attention for Visual Question Answering
- Jiasen Lu, Jianwei Yang, Dhruv Batra, Devi Parikh, Hierarchical Question-Image Co-Attention for Visual Question Answering, arXiv:1606.00061, [Paper]
- ConvLSTM
- Viorica Patraucean, Ankur Handa, Roberto Cipolla, Spatio-temporal video autoencoder with differentiable memory, ICLR 2016 Workshop, [Paper]
Convolutional Networks
- Crepe (Character-level Convolutional Networks for Text Classification)
- Xiang Zhang, Junbo Zhao, Yann LeCun, Character-level Convolutional Networks for Text Classification, NIPS 2015 [Paper]
- DCGAN (Deep Convolutional Generative Adversarial Networks)
- (#) Alec Radford, Luke Metz, Soumith Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, arXiv:1511.06434v1 [Paper]
- Inception
- (#) Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, Going Deeper with Convolutions, CVPR 2015 [Paper]
- inception-v3.torch
- (#) Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna, Rethinking the Inception Architecture for Computer Vision, arXiv:1512.00567, [Paper]
- The inception-resnet-v2 models trained from scratch via torch
- (#) Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, arXiv:1602.07261, [Paper]
- OpenFace (Face recognition with Google's FaceNet deep neural network)
- (#) Florian Schroff, Dmitry Kalenichenko, James Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR 2015 [Paper]
- Neural Style, Neural Art
- (#) Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, A Neural Algorithm of Artistic Style, arXiv:1508.06576 [Paper]
- SRCNN (Super-Resolution Using Deep Convolutional Networks), waifu2x
- (#) Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Image Super-Resolution Using Deep Convolutional Networks, arXiv:1501.00092 [Paper]
- Overfeat
- (#) Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun, OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks, arXiv:1312.6229 [Paper]
- Very Deep ConvNet (Very Deep Convolutional Networks)
- (#) K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv:1409.1556 [Paper]
- Alexnet, Overfeat, VGG in Torch on multiple GPUs over ImageNet
- Fast neural doodle
- (#) Alex J. Champandard Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks, arXiv:1603.01768 [Paper]
- Texture Networks: Feed-forward Synthesis of Textures and Stylized Images
- Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, Victor Lempitsky Texture Networks: Feed-forward Synthesis of Textures and Stylized Images, arXiv:1603.03417 [Paper]
- Artistic style transfer for videos
- Manuel Ruder, Alexey Dosovitskiy, Thomas Brox Artistic style transfer for videos, arXiv:1604.08610 [Paper]
- ResNet training in Torch
- (#) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, arXiv:1512.03385, [Paper]
- Deep Networks with Stochastic Depth
- Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger, Deep Networks with Stochastic Depth, arXiv:1603.09382, [Paper]
- Sentence Convolution Code in Torch
- (#) Yoon Kim, Convolutional Neural Networks for Sentence Classification, arXiv:1408.5882, [Paper]
- MGANs
- Chuan Li, Michael Wand, Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks, arXiv:1604.04382, [Paper]
- Deep Residual Networks with 1K Layers
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Identity Mappings in Deep Residual Networks, arXiv:1603.05027, [Paper]
- Multi-Scale Context Aggregation by Dilated Convolutions
- (#) Fisher Yu, Vladlen Koltun, Multi-Scale Context Aggregation by Dilated Convolutions, [Paper]
- CNNMRF
- Chuan Li, Michael Wand, Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis, arXiv:1601.04589, [Paper]
- Stacked Hourglass Networks for Human Pose Estimation (Training Code)
- Alejandro Newell, Kaiyu Yang, Jia Deng, Stacked Hourglass Networks for Human Pose Estimation, arXiv:1603.06937, [Paper]
- Wide Residual Networks
- Sergey Zagoruyko, Nikos Komodakis, Wide Residual Networks, Wide Residual Networks, arXiv:1605.07146, [Paper]
- Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters
- Jianwei Yang, Devi Parikh, Dhruv Batra, Joint Unsupervised Learning of Deep Representations and Image Clusters, CVPR 2016, [Paper]
- Torch implementation of the Fast R-CNN
- (#) Ross Girshick, Fast R-CNN, ICCV 2015, [Paper]
- Learning Deep Representations of Fine-grained Visual Descriptions
- Scott Reed, Zeynep Akata, Honglak Lee, Bernt Schiele, Learning Deep Representations of Fine-grained Visual Descriptions, CVPR 2016, [Paper]
- Generative Adversarial Text-to-Image Synthesis
- Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee, Generative Adversarial Text to Image Synthesis, ICML 2016, [Paper]
- DarkForest, the Facebook Go engine
- Yuandong Tian, Yan Zhu, Better Computer Go Player with Neural Network and Long-term Prediction, ICLR 2016, [Paper]
- 3D CNN
- deepmask
- imagenet-multiGPU.torchnet
- imagenet-multiGPU.torch + fb.resnet.torch in torchnet
- cvpr2016_stylenet
- Edgar Simo-Serra, Hiroshi Ishikawa, Fashion Style in 128 Floats: Joint Ranking and Classification using Weak Data for Feature Extraction, CVPR 2016, [Paper]
- ENet
- Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello, ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, arXiv:1606.02147, [Paper]
Reinforcement Learning
- Deep Q-network, DeepMind-Atari-Deep-Q-Learner
- Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, Demis Hassabis, Human-Level Control through Deep Reinforcement Learning, Nature, [Paper]
- Deep Attention Recurrent Q-Network
- (#) Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, Anastasiia Ignateva, Deep Attention Recurrent Q-Network, NIPS 2015, [Paper]
- Grid World DQN using torch7
- (#) Marc G. Bellemare, Georg Ostrovski, Arthur Guez, Philip S. Thomas, Rémi Munos, Increasing the Action Gap: New Operators for Reinforcement Learning, arXiv:1512.04860, [Paper]
- Deep Q-Networks for Accelerating the Training of Deep Neural Networks
- Jie Fu, Zichuan Lin, Miao Liu, Nicholas Leonard, Jiashi Feng, Tat-Seng Chua, Deep Q-Networks for Accelerating the Training of Deep Neural Networks, arXiv:1606.01467, [Paper]
- ActorMimic
- Emilio Parisotto, Jimmy Lei Ba, Ruslan Salakhutdinov, Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, ICLR 2016, [Paper]
- MazeBase: a sandbox for learning from games
- Sainbayar Sukhbaatar, Arthur Szlam, Gabriel Synnaeve, Soumith Chintala, Rob Fergus, MazeBase: A Sandbox for Learning from Games, arXiv:1511.07401, [Paper]
- mario-ai
- This project contains code to train a model that automatically plays the first level of Super Mario World using only raw pixels as the input (no hand-engineered features).The used technique is deep Q-learning, as described in the Atari paper (Summary), combined with a Spatial Transformer.
- Deep Successor Reinforcement Learning (DSR)
- Tejas D. Kulkarni, Ardavan Saeedi, Simanta Gautam, Samuel J. Gershman, Deep Successor Reinforcement Learning, arXiv:1606.02396, [Paper]
- ViZDoom
- ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular.
- MIXER - Sequence Level Training with Recurrent Neural Networks
- Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba, Sequence Level Training with Recurrent Neural Networks, ICLR 2016, [Paper]
- TorchQLearning
- Implementation of a simple example of Q learning in Torch.
- rltorch
- This package is a Reinforcement Learning package written in LUA for Torch.
- Opponent Modeling in Deep Reinforcement Learning
- He He, Jordan Boyd-Graber, Kevin Kwok, Hal Daumé III, Opponent Modeling in Deep Reinforcement Learning, ICML 2016, [Paper]
### ETC
- Neural Attention Model for Abstractive Summarization
- Alexander M. Rush, Sumit Chopra, Jason Weston, A Neural Attention Model for Abstractive Summarization, EMNLP 2015 [Paper]
- Memory Networks
- Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus, End-To-End Memory Networks, arXiv:1503.08895, [Paper]
- Neural Turing Machine
- Alex Graves, Greg Wayne, Ivo Danihelka, Neural Turing Machines, arXiv:1410.5401 [Paper]
- Eyescream (Natural Image Generation using ConvNets)
- Emily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus, Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks, arXiv:1506.05751 [Paper]
- BNN (Bilingual Neural Networks) with LBL and CNN
- Ke Tran, Arianna Bisazza, Christof Monz, Word Translation Prediction for Morphologically Rich Languages with Bilingual Neural Networks, EMNLP 2014 [Paper]
- Net2Net
- (#) Tianqi Chen, Ian Goodfellow, Jonathon Shlens, Net2Net: Accelerating Learning via Knowledge Transfer, arXiv:1511.05641 [Paper]
- DSSM (Deep Structured Semantic Model)
- (#) Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, Larry Heck, Learning Deep Structured Semantic Models for Web Search using Clickthrough Data, CIKM 2013 [Paper]
- TensorNet (Tensor Train-layer for Neural Nets)
- (#) Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, Dmitry Vetrov, Tensorizing Neural Networks, NIPS 2015 [Paper]
- TripletNet
- (#) Elad Hoffer, Nir Ailon, Deep metric learning using Triplet network, arXiv:1412.6622 [Paper]
- Word2Vec
- (#) Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Efficient Estimation of Word Representations in Vector Space, ICLR 2013 [Paper]
- TripletLoss (used in Google's FaceNet)
- (#) Florian Schroff, Dmitry Kalenichenko, James Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR 2015 [Paper]
- Let there be Color!: Automatic Colorization of Grayscale Images
- Satoshi Iizuka, Edgar Simo-Serra, Hiroshi Ishikawa, Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification, SIGGRAPH 2016, [Paper]
- Context Encoders: Feature Learning by Inpainting
- Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, Alexei A. Efros, Context Encoders: Feature Learning by Inpainting, CVPR 2016, [Paper]
- stnbhwd
- Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, Spatial Transformer Networks, arXiv:1506.02025, [Paper]
- DrMAD
- (#) Jie Fu, Hongyin Luo, Jiashi Feng, Kian Hsiang Low, Tat-Seng Chua, DrMAD: Distilling Reverse-Mode Automatic Differentiation for Optimizing Hyperparameters of Deep Neural Networks, arXiv:1601.00917, [Paper]
- Adaptive Neural Compilation
- Rudy Bunel, Alban Desmaison, Pushmeet Kohli, Philip H.S. Torr, M. Pawan Kumar, Adaptive Neural Compilation, arXiv:1605.07969, [Paper]
- fasttext_torch
- (#) Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov, Bag of Tricks for Efficient Text Classification, arXiv:1607.01759, [Paper]
- MemNN
- Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus, End-To-End Memory Networks, arXiv:1503.08895, [Paper]
- Variational Auto-encoder
- Diederik P Kingma, Max Welling, Auto-Encoding Variational Bayes, arXiv:1312.6114, [Paper]
- Multimodal Compact Bilinear Pooling for Torch7
- (#) Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, Marcus Rohrbach, Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding, [Paper]
- object-detection.torch
- Implementation of some object detection frameworks in torch. (Fast-RCNN, threaded RCNN, etc.)
- N3: Newtonian Image Understanding: Unfolding the Dynamics of Objects in Statis Images
- Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad Rastegari, Ali Farhadi, Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images, CVPR 2016, [Paper]
Libraries
Model related
- nn : an easy and modular way to build and train simple or complex neural networks [Code] [Documentation]
- dpnn : extensions to the nn lib, more modules [Code]
- nnx : extension to the nn lib, experimental neural network modules and criterions [Code]
- nninit : weight initialisation schemes [Code]
- rnn : Recurrent Neural Network library [Code]
- optim : A numeric optimization package for Torch [Code]
- dp : a deep learning library designed for streamlining research and development [Code] [Documentation]
- nngraph : provides graphical computation for nn library [Code] [Oxford Introduction]
- nnlr : Add layer-wise learning rate schemes to Torch [Code]
- optnet: Memory optimizations for torch neural networks. [Code]
- autograd : Autograd automatically differentiates native Torch code. [Code]
- torchnet: framework for torch which provides a set of abstractions aiming at encouraging code re-use as well as encouraging modular programming [Code] [Paper]
GPU related
- distro-cl: An OpenCL distribution for Torch [Code]
- cutorch : A CUDA backend for Torch [Code]
- cudnn : Torch FFI bindings for NVIDIA CuDNN [Code]
- fbcunn : Facebook's extensions to torch/cunn [Code] [Documentation]
IDE related
- iTorch : IPython kernel for Torch with visualization and plotting [Code]
- Lua Development Tools (LDT) : based on Eclipse [Code]
- zbs-torch : A lightweight Lua-based IDE for Lua with code completion, syntax highlighting, live coding, remote debugger, and code analyzer [Code]
ETC
- fblualib : Facebook libraries and utilities for Lua [Code]
- loadcaffe : Load Caffe networks in Torch [Code]
- Purdue e-lab lib : A collection of snippets and libraries [Code]
- torch-android : Torch for Android [Code]
- torch-models : Implementation of state-of-art models in Torch. [Code]
- lutorpy : Lutorpy is a libray built for deep learning with torch in python. [Code]
- CoreNLP.lua : Lua client for Stanford CoreNLP. [Code]
- Torchlib: Data structures and libraries for Torch. [Code]
- THFFmpeg: Torch bindings for FFmpeg (reading videos only) [Code]
- tunnel: Data Driven Framework for Distributed Computing in Torch 7, [Code]
- pytorch: Python wrappers for torch and lua, [Code]
- lutorpy: Use torch in python for deep learning., [Code]
- torch-pcl: Point Cloud Library (PCL) bindings for Torch, [Code]
- Moses: A Lua utility-belt library for functional programming. It complements the built-in Lua table library, making easier operations on arrays, lists, collections. [Cpde]
Links
Awesome Torch的更多相关文章
- Torch Problems: require some packages doesn't work
I've recently got a problem. require 'cutorch' doesn't work. But it was ok yesterday, although I hav ...
- Torch学习笔记1--Torch简介
Torch是什么 Torch是一个由Lua语言开发的深度学习框架,目前支持Mac OS X 和Ubuntu 12及以上,官网 ,github地址. 具有如下特点: 交互式开发工具 可视化式的工具 第三 ...
- 深度学习框架 Torch 7 问题笔记
深度学习框架 Torch 7 问题笔记 1. 尝试第一个 CNN 的 torch版本, 代码如下: -- We now have 5 steps left to do in training our ...
- Torch 网络层 参数的初始化问题
Torch 网络层 参数的初始化问题 参考链接: https://github.com/Kaixhin/nninit 从 Torch 中自带的包,可以看到:https://github.com/tor ...
- Torch 7 load saved model failed, 加载保存的模型失败
Torch 7 load saved model failed, 加载保存的模型失败: 可以尝试下面的解决方案:
- Torch 日志文件的保存 logroll
Torch 日志文件的保存 logroll 怎样将 Torch 在终端显示的信息,保存到 log 文件中 ? 现在介绍一种方法:利用 logroll 的方式. 参考 https://github ...
- torch 入门
torch 入门1.安装环境我的环境mac book pro 集成显卡 Intel Iris不能用 cunn 模块,因为显卡不支持 CUDA2.安装步骤: 官方文档 (1).git clone htt ...
- 对torch的一点感想
torch是一个基于LuaJIT的科学计算框架,知乎上有个人回答说torch比较适合科研用途, torch与matlab的很多函数很相似
- torch基本操作
1.在terminal中th进入troch,th+文件名.lua运行文件.进入torch之后,dofile+"文件名.lua"运行文件
- torch基本命令
命令行输入th进入torch框架 命令行输入th + lua文件表示用torch执行lua文件
随机推荐
- B树,B+树,B*树以及R树的介绍
https://blog.csdn.net/peterchan88/article/details/52248714 作者:July.weedge.Frankie.编程艺术室出品. 说明:本文从B树开 ...
- Keras 如何利用训练好的神经网络进行预测
分成两种情况,一种是公开的训练好的模型,下载后可以使用的,一类是自己训练的模型,需要保存下来,以备今后使用. 如果是第一种情况,则参考 http://keras-cn.readthedocs.i ...
- Echo团队团队展示
班级:软件工程1916|W 作业:团队作业第一次-团队展示 团队名称:Echo 课程目标:展示团队 成员信息 队员学号 队员姓名 个人博客地址 备注 221600418 黄少勇 http://www. ...
- uva 1322 Minimizing Maximizer
题意: 有n个数,m个排序器,每个排序器可以把区间ai到bi的数从小到大排序.这m个排序器的输出就是m个排序之后的第n个数. 现在发现有些排序器是多余的.问至少需要多少个排序器可以使得输出不变.排序器 ...
- 20165305 苏振龙《Java程序设计》第四周课上测试补做
第一次测试 第二次测试 第三次测试 上传代码 第四次测试 总结 之前我一直在git bash进行程序设计,但是对于我来说操作起来有点困难,所以我改用了虚拟机,之后之前一直困扰我的问题在虚拟机下就没有了 ...
- Linux基础命令---调整程序优先级renice
renice renice指令可以重新调整程序运行的优先级,可以通过进程id.用户id.组id来修改优先级.修改组的等级,影响组内所有用户的所有进程优先级:修改用户等级,影响该用户的所有进程优先级.除 ...
- Linux基础命令---显示登录用户logname
logname 显示当前登录的用户名称.此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法 logname 2 ...
- 算法提高 c++_ch02_01 (强制类型转换)
编写一个程序,利用强制类型转换打印元音字母大小写10种形式的ASCII码. 输出的顺序为:大写的字母A,E,I,O,U的ASCII码,小写的字母a,e,i,o,u的ASCII码.所有的ASCII码都用 ...
- Oracle执行计划 explain plan
Rowid的概念:rowid是一个伪列,既然是伪列,那么这个列就不是用户定义,而是系统自己给加上的. 对每个表都有一个rowid的伪列,但是表中并不物理存储ROWID列的值.不过你可以像使用其它列那样 ...
- 全球最大的3D数据集公开了!标记好的10800张全景图
Middlebury数据集 http://vision.middlebury.edu/stereo/data/ KITTI数据集简介与使用 https://blog.csdn.net/solomon1 ...