再谈Lasso回归 | elastic net | Ridge Regression
前文:Lasso linear model实例 | Proliferation index | 评估单细胞的增殖指数
参考:LASSO回歸在生物醫學資料中的簡單實例 - 生信技能树
Linear least squares, Lasso,ridge regression有何本质区别?
你应该掌握的七种回归技术 (好文,解释了各个回归的特点,以及分别应用在什么场合)
热门数据挖掘模型应用入门(一): LASSO 回归 - 侯澄钧
Feature Selection using LASSO - 原文论文 (英文的讲解更全面,更好理解,强烈推荐阅读)
这幅图解释了为什么LASSO会让大部分的βj(λ) = 0
假设一个二维模型对应的系数是 β1 和 β2,然后 β 是最小化误差平方和的点, 即用传统线性回归得到的自变量系数。 但我们想让这个系数点必须落在蓝色的正方形内,所以就有了一系列围绕 β 的同心椭圆, 其中最先与蓝色正方形接触的点,就是符合约束同时最小化误差平方和的点。
两篇经典文章:
Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature
回归中的多重共线性 Multicollinearity
elastic net
sklearn.linear_model.LassoCV Python API
常识:
||w||_2: ||w||带一个下标2 的意思是这个该向量的范数为欧几里得范数,设w=<x1,x2,x3>, ||w||_2=x1^2+x2^2+x3^2 的开根号。
(||w||_2)^2 的意思是w的欧几里得范数的平方,也就是(||w||_2)^2=x1^2+x2^2+x3^2
ŷ:y的估计值
arg min 就是使后面这个式子达到最小值时的变量的取值
今天经同学指点才发现自己的认知问题,豁然开朗!!
在python sklearn里,L1就是Lasso,L2就是ridge!
所以Lasso就像是贝叶斯一样,只是附加到基础模型上的东西。
待续~
再谈Lasso回归 | elastic net | Ridge Regression的更多相关文章
- Sklearn库例子3:分类——岭回归分类(Ridge Regression )例子
为了解决数据的特征比样本点还多的情况,统计学家引入了岭回归. 岭回归通过施加一个惩罚系数的大小解决了一些普通最小二乘的问题.回归系数最大限度地减少了一个惩罚的误差平方和. 这里是一个复杂的参数,用来控 ...
- 【机器学习】Linear least squares, Lasso,ridge regression有何本质区别?
Linear least squares, Lasso,ridge regression有何本质区别? Linear least squares, Lasso,ridge regression有何本质 ...
- 热门数据挖掘模型应用入门(一): LASSO回归
热门数据挖掘模型应用入门(一): LASSO回归 2016-10-10 20:46 作者简介: 侯澄钧,毕业于俄亥俄州立大学运筹学博士项目, 目前在美国从事个人保险产品(Personal Line)相 ...
- Lasso回归算法: 坐标轴下降法与最小角回归法小结
前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结.里面对线程回归的正则化也做了一个初步的介绍.提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归.但是对 ...
- Lasso回归总结
Ridge回归 由于直接套用线性回归可能产生过拟合,我们需要加入正则化项,如果加入的是L2正则化项,就是Ridge回归,有时也翻译为岭回归.它和一般线性回归的区别是在损失函数上增加了一个L2正则化的项 ...
- 大白话5分钟带你走进人工智能-第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归
第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入 ...
- 机器学习方法:回归(二):稀疏与正则约束ridge regression,Lasso
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. "机器学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是 ...
- scikit-learn中的岭回归(Ridge Regression)与Lasso回归
一.岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ. 二.如何调用 class sklearn.lin ...
- 线性回归——lasso回归和岭回归(ridge regression)
目录 线性回归--最小二乘 Lasso回归和岭回归 为什么 lasso 更容易使部分权重变为 0 而 ridge 不行? References 线性回归很简单,用线性函数拟合数据,用 mean squ ...
随机推荐
- 【python40--类和对象:一些相关的BIF】
0.如何判断一个类是否为另外一个类的子类 --使用issubclass(class,classinfo)函数,如果第一个函数(class)是第二个参数(classinfo)的一个子类,则返回Ture, ...
- python --- 05 字典 集合
一.字典 可变数据类型 {key:value}形式 查找效率高 key值必须是不可变的数据类型 1.增删改查 1).增 dic["新key"] = "新va ...
- Python3 tkinter基础 Canvas bind 鼠标左键点击时,在当前位置画椭圆形
Python : 3.7.0 OS : Ubuntu 18.04.1 LTS IDE : PyCharm 2018.2.4 Conda ...
- Python3基础 list range+for 等差数列
Python : 3.7.0 OS : Ubuntu 18.04.1 LTS IDE : PyCharm 2018.2.4 Conda ...
- P3899 [湖南集训]谈笑风生
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3653 https://www.luogu.org/problemnew/show/P38 ...
- win10+vscode部署java开发环境
目录 Java开发插件配置: 调试: 快捷键: 启动配置文件launch.json: 启动配置说明: Launch: Attach: User Setting: 遇到的问题: 参考: Java开发插件 ...
- IntelliJ IDEA 中SpringBoot对Run/Debug Configurations配置 SpringBoot热部署
运行一个SpringBoot多模块应用 使用SpringBoot配置启动: Use classpath of module选中要运行的模块 VM options:内部配置参数 -Dserver.por ...
- 【做题】CFedu41G. Partitions——推式子
实际上这题的题面还是颇有意思,对两个划分不同的定义暗示了第二类斯特林数,模数是\(1000000007\)又表明这题不是NTT. 那么一开始的想法是考虑每个集合的贡献.设这个集合为\(S\),那么它的 ...
- 在同一台电脑部署多个Tomcat服务
背景:公司的项目使用的是jdk1.6,Tomcat7.0,比较旧,打算建一些测试项目用jdk1.8,Tomcat9.0. 参考了网上几篇文章 http://dong-shuai22-126-com.i ...
- 题解——Codeforces Round #507 (based on Olympiad of Metropolises) T1 (模拟)
暴力模拟即可 就是情况略多 #include <cstdio> #include <algorithm> #include <cstring> using name ...