题目链接:https://codeforces.com/problemset/problem/1099/F

Mitya and Vasya are playing an interesting game. They have a rooted tree with $n$ vertices, and the vertices are indexed from $1$ to $n$. The root has index $1$. Every other vertex $i≥2$ has its parent $p_i$, and vertex $i$ is called a child of vertex $p_i$.

There are some cookies in every vertex of the tree: there are $x_i$ cookies in vertex $i$. It takes exactly $t_i$ time for Mitya to eat one cookie in vertex $i$. There is also a chip, which is initially located in the root of the tree, and it takes $l_i$ time to move the chip along the edge connecting vertex $i$ with its parent.

Mitya and Vasya take turns playing, Mitya goes first.

  Mitya moves the chip from the vertex, where the chip is located, to one of its children.
  Vasya can remove an edge from the vertex, where the chip is located, to one of its children. Vasya can also decide to skip his turn.

Mitya can stop the game at any his turn. Once he stops the game, he moves the chip up to the root, eating some cookies along his way. Mitya can decide how many cookies he would like to eat in every vertex on his way. The total time spent on descend, ascend and eating cookies should not exceed $T$. Please note that in the end of the game the chip is always located in the root of the tree: Mitya can not leave the chip in any other vertex, even if he has already eaten enough cookies — he must move the chip back to the root (and every move from vertex $v$ to its parent takes $l_v$ time).

Find out what is the maximum number of cookies Mitya can eat, regardless of Vasya's actions.

Input
The first line contains two integers $n$ and $T$ — the number of vertices in the tree and the time he has to accomplish his task $(2≤n≤10^5; 1≤T≤10^{18})$.

The second line contains $n$ integers $x_1, x_2, ..., x_n$ — number of cookies located in the corresponding vertex $(1≤x_i≤10^6)$. The third line contains $n$ integers $t_1, t_2, ..., t_n$ — how much time it takes Mitya to eat one cookie in vertex $i$ $(1≤t_i≤10^6)$.

Each of the following $n-1$ lines describe the tree. For every $i$ from $2$ to $n$, the corresponding line contains two integers $p_i$ and $l_i$, where $p_i$ denotes the parent of vertex $i$ and $l_i$ denotes the time it takes Mitya to move the chip along the edge from vertex $i$ to its parent $(1≤p_i<i, 0≤l_i≤10^9)$.

Output
Output a single integer — maximum number of cookies Mitya can eat.

Examples
Input
5 26
1 5 1 7 7
1 3 2 2 2
1 1
1 1
2 0
2 0
Output
11
Input
3 179
2 2 1
6 6 6
1 3
2 3
Output
4
Note
In the first example test case, Mitya can start by moving the chip to vertex 2. In this case no matter how Vasya plays, Mitya is able to eat at least 11 cookies. Below you can find the detailed description of the moves:

Mitya moves chip to vertex $2$.
Vasya removes edge to vertex $4$.
Mitya moves chip to vertex $5$.
Since vertex $5$ has no children, Vasya does not remove any edges.
Mitya stops the game and moves the chip towards the root, eating cookies along the way ($7$ in vertex $5$, $3$ in vertex $2$, $1$ in vertex $1$).
Mitya spend $1+0$ time to go down, $0+1$ to go up, $7⋅2$ to eat $7$ cookies in vertex $5$, $3⋅3$ to eat $3$ cookies in vertex $2$, $1⋅1$ to eat $1$ cookie in vertex $1$. Total time is $1+0+0+1+7⋅2+3⋅3+1⋅1=26$.

题意:

给你一棵树,每个节点上有若干饼干,并且给出每个节点上吃一块饼干需要多少时间,同时给出走过一条边所需时间。

总时限为 $T$,两个人轮流进行操作:

  Mitya从当前节点选择一个子节点向下走,或者直接结束游戏并往根回动吃饼干;

  Vasya割断当前节点到其某个子节点的边,或者什么都不做。

问Mitya可以吃到的最多的多少块饼干。

题解:

假如我确定某个节点作为终点,那么我就可以得到一条链,走路的时间是固定的,那么要尽量多吃饼干,显然是尽量吃耗时短的饼干。

那么我们可以很容易就可以想到搞一个类似于树上DP的思想来做,某个节点 $x$ 的 $dp[x]$ 就代表在整棵 $tree(x)$ 中选取某个节点作为终点,能吃到的最多饼干数目。

这样一来,就有 $dp[x] = \max[ calc(x), \max_{edge(x,y)}(dp[y]) ]$,其中 $calc(x)$ 就是以节点 $x$ 为终点,能吃到的做多饼干数目。

当然,由于是博弈,因此对于 $\max_{edge(x,y)}(dp[y])$,使得 $dp[y]$ 最大的那条边 $edge(x,y)$ 会被Vasya割断,因此要选择次大的 $dp[y]$。

这样一来,问题就变成了怎么求 $calc(x)$。显然,如果用朴素的做法求 $calc(x)$,是会T的,应当进行一定的优化。

考虑建立一棵线段树,以每个节点吃一块饼干所需的时间作为下标,维护饼干数目以及吃完所有饼干所需时间。这样一来可以 $O(logN)$ 得到 $calc(x)$。

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+;
const int maxt=1e6+;
int n;
ll T;
struct Vtx{
int x,t;
}vtx[maxn];
struct Edge{
int v;
ll w;
};
vector<Edge> E[maxn]; #define ls (rt<<1)
#define rs (rt<<1|1)
struct Node{
int l,r;
ll num,sum;
}node[maxt<<];
void pushup(int rt)
{
node[rt].num=node[ls].num+node[rs].num;
node[rt].sum=node[ls].sum+node[rs].sum;
}
void build(int rt,int l,int r)
{
node[rt].l=l, node[rt].r=r;
if(l==r)
{
node[rt].num=node[rt].sum=;
return;
}
int mid=(l+r)>>;
build(ls,l,mid);
build(rs,mid+,r);
pushup(rt);
}
void update(int rt,int pos,ll val)
{
if(node[rt].l==node[rt].r)
{
node[rt].num+=val;
node[rt].sum+=val*pos;
return;
}
int mid=(node[rt].l+node[rt].r)>>;
if(pos<=mid) update(ls,pos,val);
if(pos>mid) update(rs,pos,val);
pushup(rt);
}
ll query(int rt,ll val)
{
if(node[rt].l==node[rt].r) return min(node[rt].num,val/node[rt].l);
if(val<node[ls].sum) return query(ls,val);
else return node[ls].num+query(rs,val-node[ls].sum);
} ll dfs(int u,ll rest)
{
update(,vtx[u].t,vtx[u].x);
ll res=query(,rest);
ll mx1=, mx2=;
for(auto e:E[u])
{
if(*e.w>=rest) continue;
int v=e.v;
ll t=dfs(v,rest-*e.w);
if(t>mx1) mx2=mx1, mx1=t;
else if(t>mx2) mx2=t;
}
update(,vtx[u].t,-vtx[u].x);
if(u==) return max(res,mx1);
else return max(res,mx2);
}
int main()
{
scanf("%d%I64d",&n,&T);
for(int i=;i<=n;i++) scanf("%d",&vtx[i].x);
for(int i=;i<=n;i++) scanf("%d",&vtx[i].t);
for(int i=;i<=n;i++)
{
int u; ll w; scanf("%d%I64d",&u,&w);
E[u].push_back((Edge){i,w});
}
build(,,1e6);
cout<<dfs(,T)<<endl;
}

CodeForces 1099F - Cookies - [DFS+博弈+线段树]的更多相关文章

  1. Codeforces 1192B 全dfs序 + 线段树

    题意:给你一颗树,每次会修改一条边的边权,问修改之后的树的直径是多少? 思路:来源于:https://www.cnblogs.com/TinyWong/p/11260601.html 得到树的全序df ...

  2. Codeforces 916E(思维+dfs序+线段树+LCA)

    题面 传送门 题目大意:给定初始根节点为1的树,有3种操作 1.把根节点更换为r 2.将包含u,v的节点的最小子树(即lca(u,v)的子树)所有节点的值+x 3.查询v及其子树的值之和 分析 看到批 ...

  3. CodeForces 877E DFS序+线段树

    CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...

  4. Educational Codeforces Round 6 E dfs序+线段树

    题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...

  5. Codeforces 343D Water Tree(DFS序 + 线段树)

    题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...

  6. Codeforces Round #442 (Div. 2)A,B,C,D,E(STL,dp,贪心,bfs,dfs序+线段树)

    A. Alex and broken contest time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  7. CodeForces 877E Danil and a Part-time Job(dfs序+线段树)

    Danil decided to earn some money, so he had found a part-time job. The interview have went well, so ...

  8. 【BZOJ-3252】攻略 DFS序 + 线段树 + 贪心

    3252: 攻略 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 339  Solved: 130[Submit][Status][Discuss] D ...

  9. BZOJ2434 [Noi2011]阿狸的打字机(AC自动机 + fail树 + DFS序 + 线段树)

    题目这么说的: 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母.经阿狸研究发现,这个打字机是这样工作的: 输入小 ...

随机推荐

  1. 如何制作initrd.img文件

    2008-11-12 16:02:37    initrd.img文件是redhat,mandrake等linux发布使用的内存镜像文件.镜像中是一个微型系统.在安装系统时,将initrd.img展开 ...

  2. MATLAB 统计数据并画出统计直方图

    统计FilmTrust(0.5-4.0分).CiaoDVD(1-5分).MovieLens(1-5分) 等 rating 数据集分值的分布:  以 统计FilmTrust(0.5-4.0分) 为例: ...

  3. SNF开发平台WinForm-表单验证控件-通用

    CS程序也能做到像BS程序一样的验证效果,如下: 1.验证控件的展示 校验时如果不符合验证条件的控件,会在控件上显示较显眼的图标. 当出现不符合验证的控件时,鼠标悬浮会显示自定义的提示信息. 如:输入 ...

  4. 并发和多线程-说说面试长提平时少用的volatile

    说到volatile,一些参加过面试的同学对此肯定不陌生. 它是面试官口中的常客,但是平时的编码却很少打照面(起码,我是这样的). 最近的面试,我也经常会问到volatile相关的问题,比如volat ...

  5. EasyUI - DataGrid 去右边空白滚动条列

    在网上查了很长时间没有找到解决方法,干脆自已查看一下代码来解决吧,随是压缩过的,不过也还是好查的,工夫不负有心人,终于解决了,方法如下: 一.我们先让表格自适应宽度 <!DOCTYPE html ...

  6. “RESOURCE MONITOR“CPU占用特别高

    背景: SQL Server 2008 R2 10.50.1600 没有设置页面文件,内存为64G,数据库分配50G cpu使用占了50%以上,平时只有10-20%,某台服务器“RESOURCE MO ...

  7. Install elasticsearch-head: – for Elasticsearch 5.x

    Running as a plugin of Elasticsearch Install elasticsearch-head:– for Elasticsearch 5.x:site plugins ...

  8. 图像处理滤波应用(Halcon)

    1.增强对比度:halcon算子 equ_histo_image (GrayImage, ImageEquHisto) 2.空间滤波基础 滤波指接受或拒绝一定的频率分量.低通滤波器的最终效果是模糊(平 ...

  9. wpf 模板选择器DataTemplateSelector及动态绑定,DataTemplate.Triggers触发器的使用

    通常,如果有多个 DataTemplate 可用于同一类型的对象,并且您希望根据每个数据对象的属性提供自己的逻辑来选择要应用的 DataTemplate,则应创建 DataTemplateSelect ...

  10. 【转帖】流程与IT管理部——IT支撑业务变革的必然趋势

    流程与IT管理部——IT支撑业务变革的必然趋势 1前言 伴随着中国企业的信息化进程, IT部门.IT专职人员已经在大部分企业获得了一席之地,电脑.网络.软件的维护都离不开这个部门:不过“一席之地”并不 ...