3-idiots hdu4609 母函数+FFT 组合数学题
http://acm.hdu.edu.cn/showproblem.php?pid=4609
题意:1e5个数,求取三个数能形成三角形的概率。
题解(这怎么会是fft入门题QAQ):
概率的算法就是三角形取法/总取法。总取法就是C(n,3).
三角形取法如何计算?
part1:构造母函数F(日常套路),每一项的次数为长度,系数为该长度的木棍数量,用FFT算F^2 ,
得到的多项式就包含了任意取两跟棍子得到的所有长度的方案数:其中次数为两根棍长之和,系数为该长度的方案数,
part2:去重,考虑part1中得到的系数,并非方案数(举个例子,(a+b)^2==a^2+b^2+2ab)
首先,对于每个平方项,因为棍子不能重复使用,所以对于k^m要减去平方前k^(m/2)的系数,
其次,对于剩下的每一项,由于多项式乘法每个乘法都做了两遍,所以得到的系数为方案数的两倍。要/2.
我们将处理过的系数存入数组A。
part3:算方案数:为了避免重复,对于每一根的木棍,计算以它为最长边的三角形方案数:为该长度到最大长度的A的系数和,(前缀和O(1)算出)
减去其中包含它的方案数,为1*(n-1).
减去其中它不是最长的方案数,为(n-1-1)*比它长的木棍数-两根都比它长的方案数/2(乘法原理多算了一遍,容斥减去),也可以理解为 一根比它长一根比他短+两根都比他长/2.(其中比它长的木棍数并不需要树状数组,只要排个序,他就是n-i)
end
总之,fft只是一个开始,后面巨麻烦orz
坑:套miskcoo dalao的fft,结果发现别人的是魔改版的,需要深刻地理解fft才会用orz
ac代码:
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
#include<complex>
using namespace std;
//const double eps(1e-8);
typedef long long lint; const double PI = acos(-1.0); const int MaxL = , MaxN = << MaxL;
typedef complex<double> complex_t;
complex_t f[MaxN], g[MaxN];
complex_t eps[MaxN], inv_eps[MaxN];
void init_eps(int p)
{
double pi = acos(-);
//double angle = 2.0 * pi / p;
for (int i = ; i != p; ++i)
eps[i] = complex_t(cos(2.0 * pi * i / p), sin(2.0 * pi * i / p));
for (int i = ; i != p; ++i)
inv_eps[i] = conj(eps[i]);
} void transform(int n, complex_t *x, complex_t *w)
{
for (int i = , j = ; i != n; ++i)
{
if (i > j) std::swap(x[i], x[j]);
for (int l = n >> ; (j ^= l) < l; l >>= );
} for (int i = ; i <= n; i <<= )
{
int m = i >> ;
for (int j = ; j < n; j += i)
{
for (int k = ; k != m; ++k)
{
complex_t z = x[j + m + k] * w[n / i * k];
x[j + m + k] = x[j + k] - z;
x[j + k] += z;
}
}
}
} int branch[];
int num[];
complex_t a[];//(1 << 17 = 131072, 1 << 18 = 262144)
lint A[];
lint sumA[];//表示A[i]的前缀和 int main()
{
int T, n;
scanf("%d", &T);
while (T--)
{
scanf("%d", &n);
int maxBranch = ;
for (int i = ; i < n; i++)
{
scanf("%d", branch + i);
maxBranch = max(maxBranch, branch[i]);
}
memset(num, , sizeof(num));
for (int i = ; i < n; i++)
num[branch[i]]++;
for (int i = ; i <= maxBranch; i++)
a[i] = num[i];
int len = ;
while (len <= maxBranch) len <<= ;
len <<= ;
for (int i = maxBranch + ; i < len; i++)
a[i] = 0.0;
init_eps(len);
transform( len,a ,eps);
for (int i = ; i < len; i++)
a[i] = a[i] * a[i];
transform( len,a, inv_eps);
for (int i = ; i <= * maxBranch; i++)
A[i] = (lint)(a[i].real() + 0.5)/len;
for (int i = ; i <= * maxBranch; i += )
A[i] -= num[i >> ];
for (int i = ; i <= * maxBranch; i++)
A[i] /= ;
//到现在为止A[i]表示的是取两根不同的branch的长度和为i的组合种数
sumA[] = ;
for (int i = ; i <= * maxBranch; i++)
sumA[i] = sumA[i - ] + A[i];
lint ans = ;
sort(branch, branch + n);
for (int i = ; i <= n; i++)//以第i根作为边最长的
{
lint tmp = sumA[ * maxBranch] - sumA[branch[i]];//另外两条边长度和要大于branch[i]
tmp -= (lint)(n - i)*(n - );//比它长
tmp += (lint)(n - i)*(n - i - ) / ;//两条都比他长
tmp -= n - ;//另外两条的组合中包括它自己的组合
ans += tmp;
}
double p = ans * . / n / (n - ) / (n - );
printf("%.7f\n", p);
}
cin >> n;
return ;
}
/*
*/
/*
2
4
1 3 3 4
4
2 3 3 4 */
3-idiots hdu4609 母函数+FFT 组合数学题的更多相关文章
- HDU4609 FFT+组合计数
HDU4609 FFT+组合计数 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 找出n根木棍中取出三根木棍可以组成三角形的概率 题解: ...
- 组合数学题 Codeforces Round #108 (Div. 2) C. Pocket Book
题目传送门 /* 题意:每一次任选i,j行字符串进行任意长度前缀交换,然后不断重复这个过程,问在过程中,第一行字符串不同的个数 组合数学题:每一列不同的字母都有可能到第一行,所以每列的可能值相乘取模就 ...
- HDU4609 3-idiots(母函数 + FFT)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4609 Description King OMeGa catched three men wh ...
- BZOJ.3771.Triple(母函数 FFT 容斥)
题目链接 \(Description\) 有\(n\)个物品(斧头),每个物品价值不同且只有一件,问取出一件.两件.三件物品,所有可能得到的价值和及其方案数.\((a,b),(b,a)\)算作一种方案 ...
- UVa12298 Super Poker II(母函数 + FFT)
题目 Source http://acm.hust.edu.cn/vjudge/problem/23590 Description I have a set of super poker cards, ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- SPOJ - TSUM 母函数+FFT+容斥
题意:n个数,任取三个加起来,问每个可能的结果的方案数. 题解:构造母函数ABC,比如现在有 1 2 3 三个数.则 其中B表示同一个数加两次,C表示用三次.然后考虑去重. A^3表示可重复地拿三个. ...
- SPOJ:Triple Sums(母函数+FFT)
You're given a sequence s of N distinct integers.Consider all the possible sums of three integers fr ...
随机推荐
- Kriging插值法
克里金法是通过一组具有 z 值的分散点生成估计表面的高级地统计过程.与插值工具集中的其他插值方法不同,选择用于生成输出表面的最佳估算方法之前,有效使用克里金法工具涉及 z 值表示的现象的空间行为的交互 ...
- 项目通过tomcat部署到服务器,请求数据中文乱码问题
问题: 本地项目请求访问,浏览器中文输出没问题.部署到服务器上面之后,返回到浏览器的中文就乱码了. 尝试办法: 1.修改tomcat下的conf中的service.xml中的配置信息: 重新启动后,没 ...
- Git教程学习(四)
12. 分支管理场景 多人协同工作时,你在优化代码X,需要较长时间才能完成,未完成之前会影响整体代码的使用.于是写完的代码不能提交到版本库,提交就会影响别人使用整体的代码.不提交你就失去了git的版本 ...
- mysql 存储引擎对索引的支持
一.首先给出mysql官方文档给出的不同存储引擎对索引的支持 从上面的图中可以得知,mysql 是支持hash索引的,但支持和不支持又和具体的存储引擎有关系.从图中看到InnoDB是支持Btree索引 ...
- windows下安装pycharm并连接Linux的python环境
1. 下载安装Pycharm专业版 具体方法略.Pycharm5激活方法参考http://www.cnblogs.com/snsdzjlz320/p/7110186.html 2. 添加配置连接远程服 ...
- JAVA(二)异常/包及访问权限/多线程/泛型
成鹏致远 | lcw.cnblog.com |2014-01-28 异常 1.异常的基本概念 异常是导致程序中断运行的一种指令流 基本的异常处理格式:try...catch,try中捕获异常,出现异常 ...
- Smack类库详细介绍
原文地址:http://blog.csdn.net/xunshu/archive/2008/03/27/2223817.aspx Smack是一个为使用XMPP服务器聊天和发送即时消息交流而提供的库. ...
- Numpy数组与PIL Image转换
引用于这个博客
- 【iCore4 双核心板_FPGA】例程五:基础逻辑门实验——逻辑门使用
实验现象: 打开tool-->Netlist viewer-->RTL viewer可观察各个逻辑连接 核心代码: //--------------------module_logic_g ...
- vue模板语法
Vue.js 使用了基于 HTML 的模版语法,允许开发者声明式地将 DOM 绑定至底层 Vue 实例的数据.所有 Vue.js 的模板都是合法的 HTML ,所以能被遵循规范的浏览器和 HTML 解 ...