https://www.jianshu.com/p/b7274afff14f?from=timeline

  1. #先加载包
  2. library(ggpubr)
  3. #加载数据集ToothGrowth
  4. data("ToothGrowth")
  5. head(ToothGrowth)
  1. ## len supp dose
  2. ## 1 4.2 VC 0.5
  3. ## 2 11.5 VC 0.5
  4. ## 3 7.3 VC 0.5
  5. ## 4 5.8 VC 0.5
  6. ## 5 6.4 VC 0.5
  7. ## 6 10.0 VC 0.5

比较方法

R中常用的比较方法主要有下面几种:

方法 R函数 描述
T-test t.test() 比较两组(参数)
Wilcoxon test wilcox.test() 比较两组(非参数)
ANOVA aov()或anova() 比较多组(参数)
Kruskal-Wallis kruskal.test() 比较多组(非参数)

各种比较方法后续有时间一一讲解。

添加p-value

主要利用ggpubr包中的两个函数:

  • compare_means():可以进行一组或多组间的比较
  • stat_compare_mean():自动添加p-value、显著性标记到ggplot图中

compare_means()函数

该函数主要用用法如下:

  1. compare_means(formula, data, method = "wilcox.test", paired = FALSE,
  2. group.by = NULL, ref.group = NULL, ...)

注释:

  • formula:形如x~group,其中x是数值型变量,group是因子,可以是一个或者多个
  • data:数据集
  • method:比较的方法,默认为"wilcox.test", 其他可选方法为:"t.test""anova""kruskal.test"
  • paired:是否要进行paired test(TRUE or FALSE)
  • group_by: 比较时是否要进行分组
  • ref.group: 是否需要指定参考组

stat_compare_means()函数

主要用法:

  1. stat_compare_means(mapping = NULL, comparisons = NULL hide.ns = FALSE,
  2. label = NULL, label.x = NULL, label.y = NULL, ...)

注释:

  • mapping:由aes()创建的一套美学映射
  • comparisons:指定需要进行比较以及添加p-value、显著性标记的组
  • hide.ns:是否要显示显著性标记ns
  • label:显著性标记的类型,可选项为:p.signif(显著性标记)、p.format(显示p-value)
  • label.xlabel.y:显著性标签调整
  • ...:其他参数

比较独立的两组

  1. compare_means(len~supp, data=ToothGrowth)
 
 

结果解释:

  • .y:测试中使用的y变量
  • p:p-value
  • p.adj:调整后的p-value。默认为p.adjust.method="holm"
  • p.format:四舍五入后的p-value
  • p.signif:显著性水平
  • method:用于统计检验的方法

绘制箱线图

  1. p <- ggboxplot(ToothGrowth, x="supp", y="len", color = "supp",
  2. palette = "jco", add = "jitter")#添加p-valuep+stat_compare_means()
 
 
  1. #使用其他统计检验方法
  2. p+stat_compare_means(method = "t.test")
 
 

上述显著性标记可以通过label.xlabel.yhjustvjust来调整
显著性标记可以通过aes()映射来更改:

  • aes(label=..p.format..)aes(lebel=paste0("p=",..p.format..)):只显示p-value,不显示统计检验方法
  • aes(label=..p.signif..):仅显示显著性水平
  • aes(label=paste0(..method..,"\n", "p=",..p.format..)):p-value与显著性水平分行显示

举个栗子:

  1. p+stat_compare_means(aes(label=..p.signif..), label.x = 1.5, label.y = 40)
 
 

也可以将标签指定为字符向量,不要映射,只需将p.signif两端的..去掉即可

  1. p+stat_compare_means(label = "p.signif", label.x = 1.5, label.y = 40)
 
 

比较两个paired sample

  1. compare_means(len~supp, data=ToothGrowth, paired = TRUE)
 
 

利用ggpaired()进行可视化

  1. ggpaired(ToothGrowth, x="supp", y="len", color = "supp", line.color = "gray",
  2. line.size = 0.4, palette = "jco")+ stat_compare_means(paired = TRUE)
 
 

多组比较

Global test

  1. compare_means(len~dose, data=ToothGrowth, method = "anova")
 
 

可视化

  1. ggboxplot(ToothGrowth, x="dose", y="len", color = "dose", palette = "jco")+
  2. stat_compare_means()
 
 
  1. #使用其他的方法
  2. ggboxplot(ToothGrowth, x="dose", y="len", color = "dose", palette = "jco")+
  3. stat_compare_means(method = "anova")
 
 

Pairwise comparisons:如果分组变量中包含两个以上的水平,那么会自动进行pairwise test,默认方法为"wilcox.test"

  1. compare_means(len~dose, data=ToothGrowth)
 
 
  1. #可以指定比较哪些组
  2. my_comparisons <- list(c("0.5", "1"), c("1", "2"), c("0.5", "2"))
  3. ggboxplot(ToothGrowth, x="dose", y="len", color = "dose",palette = "jco")+
  4. stat_compare_means(comparisons=my_comparisons)+ # Add pairwise
  5. comparisons p-value stat_compare_means(label.y = 50) # Add global p-value
 
 

可以通过修改参数label.y来更改标签的位置

  1. ggboxplot(ToothGrowth, x="dose", y="len", color = "dose",palette = "jco")+
  2. stat_compare_means(comparisons=my_comparisons, label.y = c(29, 35, 40))+ # Add pairwise comparisons p-value
  3. stat_compare_means(label.y = 45) # Add global p-value
 
 

至于通过添加线条来连接比较的两组,这一功能已由包ggsignif实现

  1. ##设定参考组
  2. compare_means(len~dose, data=ToothGrowth, ref.group = "0.5", #以dose=0.5组为参考组
  3. method = "t.test" )
 
 
  1. #可视化
  2. ggboxplot(ToothGrowth, x="dose", y="len", color = "dose", palette = "jco")+
  3. stat_compare_means(method = "anova", label.y = 40)+ # Add global p-value
  4. stat_compare_means(label = "p.signif", method = "t.test", ref.group = "0.5") # Pairwise comparison against reference
 
 

参考组也可以设置为.all.即所有的平均值

  1. compare_means(len~dose, data=ToothGrowth, ref.group = ".all.", method = "t.test")
 
 
  1. #可视化
  2. ggboxplot(ToothGrowth, x="dose", y="len", color = "dose", palette = "jco")+
  3. stat_compare_means(method = "anova", label.y = 40)+# Add global p-value
  4. stat_compare_means(label = "p.signif", method = "t.test",
  5. ref.group = ".all.")#Pairwise comparison against all
 
 

接下来利用survminer包中的数据集myeloma来讲解一下为什么有时候我们需要将ref.group设置为.all.

  1. library(survminer)#没安装的先安装再加载
  2. data("myeloma")
  3. head(myeloma)
 
 

我们将根据患者的分组来绘制DEPDC1基因的表达谱,看不同组之间是否存在显著性的差异,我们可以在7组之间进行比较,但是这样的话组间比较的组合就太多了,因此我们可以将7组中每一组与全部平均值进行比较,看看DEPDC1基因在不同的组中是否过表达还是低表达。

  1. compare_means(DEPDC1~molecular_group, data = myeloma, ref.group = ".all.", method = "t.test")
 
 
  1. #可视化DEPDC1基因表达谱
  2. ggboxplot(myeloma, x="molecular_group", y="DEPDC1",
  3. color = "molecular_group", add = "jitter", legend="none")+
  4. rotate_x_text(angle = 45)+
  5. geom_hline(yintercept = mean(myeloma$DEPDC1), linetype=2)+# Add horizontal line at base mean
  6. stat_compare_means(method = "anova", label.y = 1600)+ # Add global annova p-value
  7. stat_compare_means(label = "p.signif", method = "t.test", ref.group = ".all.")# Pairwise comparison against all
 
 

从图中可以看出,DEPDC1基因在Proliferation组中显著性地过表达,而在Hyperdiploid和Low bone disease显著性地低表达

我们也可以将非显著性标记ns去掉,只需要将参数hide.ns=TRUE

  1. ggboxplot(myeloma, x="molecular_group", y="DEPDC1",
  2. color = "molecular_group", add = "jitter", legend="none")+
  3. rotate_x_text(angle = 45)+
  4. geom_hline(yintercept = mean(myeloma$DEPDC1), linetype=2)+# Add horizontal line at base mean
  5. stat_compare_means(method = "anova", label.y = 1600)+ # Add global annova p-value
  6. stat_compare_means(label = "p.signif", method = "t.test", ref.group = ".all.", hide.ns = TRUE)# Pairwise comparison against all
 
 

多个分组变量

按另一个变量进行分组之后进行统计检验,比如按变量dose进行分组:

  1. compare_means(len~supp, data=ToothGrowth, group.by = "dose")
 
 
  1. #可视化
  2. p <- ggboxplot(ToothGrowth, x="supp", y="len", color = "supp",
  3. palette = "jco", add = "jitter", facet.by = "dose", short.panel.labs = FALSE)#按dose进行分面
  4. #label只绘制
  5. p-valuep+stat_compare_means(label = "p.format")
 
 
  1. #label绘制显著性水平
  2. p+stat_compare_means(label = "p.signif", label.x = 1.5)
 
 
  1. #将所有箱线图绘制在一个panel中
  2. p <- ggboxplot(ToothGrowth, x="dose", y="len", color = "supp",
  3. palette = "jco", add = "jitter")
  4. p+stat_compare_means(aes(group=supp))
 
 
  1. #只显示p-value
  2. p+stat_compare_means(aes(group=supp), label = "p.format")
 
 
  1. #显示显著性水平
  2. p+stat_compare_means(aes(group=supp), label = "p.signif")
 
 
  1. 进行paired sample检验
  2. compare_means(len~supp, data=ToothGrowth, group.by = "dose", paired = TRUE)
 
 
  1. #可视化
  2. p <- ggpaired(ToothGrowth, x="supp", y="len", color = "supp",
  3. palette = "jco", line.color="gray", line.size=0.4, facet.by = "dose",
  4. short.panel.labs = FALSE)#按dose分面
  5. #只显示p-value
  6. p+stat_compare_means(label = "p.format", paired = TRUE)
 
 

其他图形

条形图与线图(一个分组变量)

  1. #有误差棒的条形图,实际上我以前的文章里有纯粹用ggplot2实现
  2. ggbarplot(ToothGrowth, x="dose", y="len", add = "mean_se")+
  3. stat_compare_means()+
  4. stat_compare_means(ref.group = "0.5", label = "p.signif", label.y = c(22, 29))
 
 
  1. #有误差棒的线图
  2. ggline(ToothGrowth, x="dose", y="len", add = "mean_se")+
  3. stat_compare_means()+
  4. stat_compare_means(ref.group = "0.5", label = "p.signif", label.y = c(22, 29))
 
 

条形图与线图(两个分组变量)

  1. ggbarplot(ToothGrowth, x="dose", y="len", add = "mean_se", color = "supp",
  2. palette = "jco", position = position_dodge(0.8))+
  3. stat_compare_means(aes(group=supp), label = "p.signif", label.y = 29)
 
 
  1. ggline(ToothGrowth, x="dose", y="len", add = "mean_se", color = "supp",
  2. palette = "jco")+
  3. stat_compare_means(aes(group=supp), label = "p.signif", label.y = c(16, 25, 29))
 
 

Sessioninfo

  1. sessionInfo()
  2. ## R version 3.4.0 (2017-04-21)
  3. ## Platform: x86_64-w64-mingw32/x64 (64-bit)
  4. ## Running under: Windows 8.1 x64 (build 9600)
  5. ##
  6. ## Matrix products: default
  7. ##
  8. ## locale:
  9. ## [1] LC_COLLATE=Chinese (Simplified)_China.936
  10. ## [2] LC_CTYPE=Chinese (Simplified)_China.936
  11. ## [3] LC_MONETARY=Chinese (Simplified)_China.936
  12. ## [4] LC_NUMERIC=C
  13. ## [5] LC_TIME=Chinese (Simplified)_China.936
  14. ##
  15. ## attached base packages:
  16. ## [1] stats graphics grDevices utils datasets methods base
  17. ##
  18. ## other attached packages:
  19. ## [1] survminer_0.4.0 ggpubr_0.1.3 magrittr_1.5 ggplot2_2.2.1
  20. ##
  21. ## loaded via a namespace (and not attached):
  22. ## [1] Rcpp_0.12.11 compiler_3.4.0 plyr_1.8.4
  23. ## [4] tools_3.4.0 digest_0.6.12 evaluate_0.10
  24. ## [7] tibble_1.3.3 gtable_0.2.0 nlme_3.1-131
  25. ## [10] lattice_0.20-35 rlang_0.1.1 Matrix_1.2-10
  26. ## [13] psych_1.7.5 ggsci_2.4 DBI_0.6-1
  27. ## [16] cmprsk_2.2-7 yaml_2.1.14 parallel_3.4.0
  28. ## [19] gridExtra_2.2.1 dplyr_0.5.0 stringr_1.2.0
  29. ## [22] knitr_1.16 survMisc_0.5.4 rprojroot_1.2
  30. ## [25] grid_3.4.0 data.table_1.10.4 KMsurv_0.1-5
  31. ## [28] R6_2.2.1 km.ci_0.5-2 survival_2.41-3
  32. ## [31] foreign_0.8-68 rmarkdown_1.5 reshape2_1.4.2
  33. ## [34] tidyr_0.6.3 purrr_0.2.2.2 splines_3.4.0
  34. ## [37] backports_1.1.0 scales_0.4.1 htmltools_0.3.6
  35. ## [40] assertthat_0.2.0 mnormt_1.5-5 xtable_1.8-2
  36. ## [43] colorspace_1.3-2 ggsignif_0.2.0 labeling_0.3
  37. ## [46] stringi_1.1.5 lazyeval_0.2.0 munsell_0.4.3
  38. ## [49] broom_0.4.2 zoo_1.8-0

作者:taoyan
链接:https://www.jianshu.com/p/b7274afff14f
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

R语言可视化学习笔记之添加p-value和显著性标记--转载的更多相关文章

  1. R语言可视化学习笔记之添加p-value和显著性标记

    R语言可视化学习笔记之添加p-value和显著性标记 http://www.jianshu.com/p/b7274afff14f?from=timeline   上篇文章中提了一下如何通过ggpubr ...

  2. R语言可视化学习笔记之ggpubr包—SCI文章图

    转载:https://www.jianshu.com/p/678213d605a5?from=jiantop.com Hadley Wickham创建的可视化包ggplot2可以流畅地进行优美的可视化 ...

  3. 从零开始系列-R语言基础学习笔记之二 数据结构(二)

    在上一篇中我们一起学习了R语言的数据结构第一部分:向量.数组和矩阵,这次我们开始学习R语言的数据结构第二部分:数据框.因子和列表. 一.数据框 类似于二维数组,但不同的列可以有不同的数据类型(每一列内 ...

  4. R语言的学习笔记 (持续更新.....)

    1. DATE 处理 1.1 日期格式一个是as.Date(XXX) 和strptime(XXX),前者为Date格式,后者为POSIXlt格式 1.2 用法:as.Date(XXX,"%Y ...

  5. 从零开始系列--R语言基础学习笔记之一 环境搭建

    R是免费开源的软件,具有强大的数据处理和绘图等功能.下面是R开发环境的搭建过程. 一.点击网址 https://www.r-project.org/ ,进入"The R Project fo ...

  6. R语言入门学习笔记 - 对R软件的认识

    一.R软件 1.安装R:自行百度☺ 2.R控制台(R Console)和R程序脚本: 打开R软件,就会直接打开控制台,控制台可以显示程序运行的结果.错误提示等信息,也可以直接输入想要执行的操作并立即返 ...

  7. # C语言假期学习笔记——6

    C语言假期学习笔记--6 数组 主要学习了一位数组和二维数组. 数组是一组具有相同类型的变量的集合.C语言程序通过元素的下标来访问数组中的元素.(下标从0开始) 一位数组 类型 数组名[元素个数] 二 ...

  8. R语言统计学习-1简介

    一. 统计学习概述 统计学习是指一组用于理解数据和建模的工具集.这些工具可分为有监督或无监督.1.监督学习:用于根据一个或多个输入预测或估计输出.常用于商业.医学.天体物理学和公共政策等领域.2.无监 ...

  9. R parallel包学习笔记2

    这个部分我在datacamp上面学习笔记,可视化的性能很差,使用的函数也很少. 可以参考一下大佬的博客园个人感觉他们讲的真的很详细 https://cosx.org/2016/09/r-and-par ...

随机推荐

  1. Android Auto开发初探

    一.Android Auto 概述 二.Android Auto 使用方法 四.Android Auto应用开发 五.Android Auto开发总结 一.Android Auto 概述 最近物联网是 ...

  2. Java的字段初始化规律

    package 代码测试; public class InitializeBlockClass { {field=200;} public int field=100; public Initiali ...

  3. 10分钟看懂!基于Zookeeper的分布式锁

    实现分布式锁目前有三种流行方案,分别为基于数据库.Redis.Zookeeper的方案,其中前两种方案网络上有很多资料可以参考,本文不做展开.我们来看下使用Zookeeper如何实现分布式锁. 什么是 ...

  4. javaweb笔记—02

    1.compatible:adj. 兼容的:能共处的:可并立的2.web所有的请求都是http请求,http请求默认的编码是ISO-8859-1,不支持utf-8,要统一设置前台和后台一样,才不会乱码 ...

  5. JS笔记—02

    1.String截取:substr:截几位, substring:截到哪. 2.String的操作,例如变大写,小写,本身不会变,只是在栈里交换引用似的 var str = "hello w ...

  6. 4-20mA电流环路发送器入门(转)

    4-20mA电流环路发送器入门 作者:Collin Wells, 德州仪器精密模拟应用工程师 在现代工业控制系统中,4-20 mA电流环路发送器一直是在控制中心和现场传感器/执行器之间进行数据传输最为 ...

  7. truncate table很慢之enq: RO - fast object reuse和local write wait等待分析

    使用ASSM表空间(默认模式)的时候,在dss系统中确实会出现truncate很慢的现象,但是他不会100%重现,得看概率.通过sql trace(对任何v$sysstat看起来资源消耗很低的情况,都 ...

  8. bzoj 3670 动物园 - kmp - 动态规划

    Description 近日,园长发现动物园中好吃懒做的动物越来越多了.例如企鹅,只会卖萌向游客要吃的.为了整治动物园的不良风气,让动物们凭自己的真才实学向游客要吃的,园长决定开设算法班,让动物们学习 ...

  9. JavaScript中数组的排序方法:1.冒泡排序 2.选择排序

      //1.选择排序: //从小到大排序:通过比较首先选出最小的数放在第一个位置上,然后在其余的数中选出次小数放在第二个位置上,依此类推,直到所有的数成为有序序列. var arr2=[19, 8, ...

  10. Windows Shell编程实现重叠图标IconOverlay

    转载:https://www.codeproject.com/Articles/7484/How-to-overlay-an-icon-over-existing-shell-objects 转载:h ...