Bellman-Ford算法:POJ No.3169 Layout 差分约束
#define _CRT_SECURE_NO_WARNINGS
/*
4 2 1
1 3 10 2 4 20
2 3 3
*/
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
using namespace std; const int maxn = + ;
const int INF = ;
//输入
int N, ML, MD;
int AL[maxn], BL[maxn], DL[maxn];
int AD[maxn], BD[maxn], DD[maxn]; int d[maxn]; void solve()
{
fill(d, d + N, INF);
d[] = ; //用Bellman-Ford算法计算d
for (int k = ; k < N; k++) {
//从i+1到i的权值为0
for (int i = ; i + < N; i++) {
if (d[i + ] < INF) d[i] = min(d[i], d[i + ]);
}
//从AL到BL的权值为DL
for (int i = ; i < ML; i++) {
if (d[AL[i] - ] < INF) {
d[BL[i] - ] = min(d[BL[i] - ], d[AL[i] - ] + DL[i]);
}
}
//从BD到AD的权值为-DD
for (int i = ; i < MD; i++) {
if (d[BD[i] - ] < INF) {
d[AD[i] - ] = min(d[AD[i] - ], d[BD[i] - ] - DD[i]);
}
}
}
int res = d[N - ];
if (d[] < ) {
//存在负边无解
res = -;
}
else if (res == INF) {
res = -;
}
printf("%d\n", res);
} void input()
{
cin >> N >> ML >> MD;
for (int i = ; i < ML; i++) {
cin >> AL[i] >> BL[i] >> DL[i];
}
for (int i = ; i < MD; i++) {
cin >> AD[i] >> BD[i] >> DD[i];
}
} int main()
{
input();
solve();
return ;
}
Bellman-Ford算法:POJ No.3169 Layout 差分约束的更多相关文章
- POJ 3169 Layout (差分约束)
题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...
- POJ 3169 Layout(差分约束+链式前向星+SPFA)
描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
- POJ 3169 Layout(差分约束啊)
题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...
- poj 3169 Layout 差分约束模板题
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6415 Accepted: 3098 Descriptio ...
- POJ 3169 Layout(差分约束 线性差分约束)
题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- ShortestPath:Layout(POJ 3169)(差分约束的应用)
布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...
- poj Layout 差分约束+SPFA
题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...
随机推荐
- Tomcat启动错误一例org.apache.catalina.core.StandardContext resources Start Error starting static Resources
org.apache.catalina.core.StandardContext resources Start Error starting static Resources 引发原因:Eclips ...
- vuex的数据交互
methods:{ ...mapMutations({aaa:hs}) //将mutations的方法暴露出来,进行调用 aaa是他的名字 ...mapActions(['hs']) //将actio ...
- pandas聚合aggregate
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/5/24 15:03 # @Author : zhang chao # @Fi ...
- HTML5 & auto download image
HTML5 & auto download image https://www.sitepoint.com/new-html5-attributes-hyperlinks-download-m ...
- 网页性能优化之异步加载js文件
一个网页的有很多地方可以进行性能优化,比较常见的一种方式就是异步加载js脚本文件.在谈异步加载之前,先来看看浏览器加载js文件的原理. 浏览器加载 JavaScript 脚本,主要通过<scri ...
- python之tkinter使用-单级菜单
# 菜单功能说明:单级菜单 import tkinter as tk root = tk.Tk() root.title('菜单选择') root.geometry('200x60') # 设置窗口大 ...
- npm指向淘宝源
临时 npm --registry https://registry.npm.taobao.org install express1 持久 npm config set registry https: ...
- Picture POJ - 1177(扫描线求面积并)
题意:求矩形并的面积.. 解析: 扫描线第一道题....自下而上扫描的... 如果不懂什么是扫描线戳我 #include <iostream> #include <cstdio> ...
- mybatis There is no getter for property named '*' in 'class java.lang.String
1.原因 server层 xxxx.get("1234") map <if test="aaa != null and aaa.id != null and ...
- MT【4】坐标平移后齐次化
简答:通过坐标平移可以将A点移到原点,设BC:mx’+ny’=1,联立坐标变换后的椭圆方程和BC,将$\frac{y}{x}$看成斜率k,得到关于k的一元二次方程,由题意两根之积为-1,可得.