Bellman-Ford算法:POJ No.3169 Layout 差分约束
#define _CRT_SECURE_NO_WARNINGS
/*
4 2 1
1 3 10 2 4 20
2 3 3
*/
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
using namespace std; const int maxn = + ;
const int INF = ;
//输入
int N, ML, MD;
int AL[maxn], BL[maxn], DL[maxn];
int AD[maxn], BD[maxn], DD[maxn]; int d[maxn]; void solve()
{
fill(d, d + N, INF);
d[] = ; //用Bellman-Ford算法计算d
for (int k = ; k < N; k++) {
//从i+1到i的权值为0
for (int i = ; i + < N; i++) {
if (d[i + ] < INF) d[i] = min(d[i], d[i + ]);
}
//从AL到BL的权值为DL
for (int i = ; i < ML; i++) {
if (d[AL[i] - ] < INF) {
d[BL[i] - ] = min(d[BL[i] - ], d[AL[i] - ] + DL[i]);
}
}
//从BD到AD的权值为-DD
for (int i = ; i < MD; i++) {
if (d[BD[i] - ] < INF) {
d[AD[i] - ] = min(d[AD[i] - ], d[BD[i] - ] - DD[i]);
}
}
}
int res = d[N - ];
if (d[] < ) {
//存在负边无解
res = -;
}
else if (res == INF) {
res = -;
}
printf("%d\n", res);
} void input()
{
cin >> N >> ML >> MD;
for (int i = ; i < ML; i++) {
cin >> AL[i] >> BL[i] >> DL[i];
}
for (int i = ; i < MD; i++) {
cin >> AD[i] >> BD[i] >> DD[i];
}
} int main()
{
input();
solve();
return ;
}
Bellman-Ford算法:POJ No.3169 Layout 差分约束的更多相关文章
- POJ 3169 Layout (差分约束)
题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...
- POJ 3169 Layout(差分约束+链式前向星+SPFA)
描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
- POJ 3169 Layout(差分约束啊)
题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...
- poj 3169 Layout 差分约束模板题
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6415 Accepted: 3098 Descriptio ...
- POJ 3169 Layout(差分约束 线性差分约束)
题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- ShortestPath:Layout(POJ 3169)(差分约束的应用)
布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...
- poj Layout 差分约束+SPFA
题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...
随机推荐
- 一种快速统计SQL Server每个表行数的方法
转载自:http://www.cnblogs.com/kenyang/archive/2013/04/09/3011447.html 我们都知道用聚合函数count()可以统计表的行数.如果需要统计数 ...
- Appium学习笔记1_获取到APK安装包的Package以及Activity属性值
我们设置DesiredCapabilities属性值得时候需要设置"appPackage"和"appActivity",如何获取到这两个值呢? 这两个值不是随便 ...
- php多进程pcntl学习-僵尸进程
上个月写的文章,php多进程pcntl学习(一)现在发现并不完整,因为虽然提到了关闭子进程,但是并没有回收子进程,简单的说就是当子进程比父进程先退出,而父进程没对其做任何处理的时候,子进程将会变成僵尸 ...
- python3_字符串
一.字符串的表示 >>> s = "narjaja never give up" #字符串的创建和初始化 >>> s = 'narjaja ne ...
- python之工作举例:通过复制NC文件来造数据
# 通过对NC文件复制来造数据 import os, shutil # 遍历的根目录 root_dir = "D:\\test_data\\DISASTER\\" # 获取NC文件 ...
- Java过滤器Filter的使用详解
过滤器 过滤器是处于客户端与服务器资源文件之间的一道过滤网,在访问资源文件之前,通过一系列的过滤器对请求进行修改.判断等,把不符合规则的请求在中途拦截或修改.也可以对响应进行过滤,拦截或修改响应. 如 ...
- Intent 跳转Activity
Intent 跳转 显示跳转(用类名跳转) Intent i = new Intent(a.this,b.class); 隐士跳转 自定义Action <!--配置跳转Activity--> ...
- Luogu 4294 [WC2008]游览计划 | 斯坦纳树
题目链接 Luogu 4294 (我做这道题的时候BZOJ全站的SPJ都炸了 提交秒WA 幸好有洛谷) 题解 这道题是[斯坦纳树]的经典例题.斯坦纳树是这样一类问题:带边权无向图上有几个(一般约10个 ...
- [poj3278]抓住那头牛
题目描述 Farmer John has been informed of the location of a fugitive cow and wants to catch her immediat ...
- LeetCode好题汇总
最近开始刷LeetCode,准备按照专题来进行.所有的解题方案我都会放在GitHub上面,对于有价值的题目,我会重新在这里做记录,并且将解题方案贴出来,便于自己之后复习. Array 1. easy ...