这里的一些东西只是将过去已有的东西用PGM解释了一遍,但优势还是明显的,对整体认识有帮助。

Video: https://www.youtube.com/watch?v=ogs4Oj8KahQ&index=13&list=PL50E6E80E8525B59C

3 - 1 - Overview of Template Models

3 - 2 - Temporal Models

3 - 3 - Temporal Models - HMMs

3 - 4 - Plate Models (以下主要是此内容)

DBM

动态BM其实就是加入了时间这个变脸,然后随着时间的变化,原有的节点会产生状态转移这样的过程。

Nested Plates & Overlapping Plates

  

左:一个courses框框可以包含很多个students框框。

右:如此一来,Courses框框的Difficulty就不是共享模式了。

结合后的效果如下:

意义在于:

Parameters and structure are reused within a BN and across different BNs.

Collective Inference

一个推断思维的例子:

学生选择第二第三课程,分低;但他的第一课程,分高;

那么,第一课程可能真的简单。

Plate notation

In Bayesian inferenceplate notation is a method of representing variables that repeat in a graphical model.

Instead of drawing each repeated variable individually, a plate or rectangle is used to group variables into a subgraph that repeat together, and a number is drawn on the plate to represent the number of repetitions of the subgraph in the plate.

The assumptions are that

    • the subgraph is duplicated that many times,
    • the variables in the subgraph are indexed by the repetition number, and
    • any links that cross a plate boundary are replicated once for each subgraph repetition.

In this example, we consider Latent Dirichlet allocation, a Bayesian network that models how documents in a corpus are topically related. There are two variables not in any plate:

    • α is the parameter of the uniform Dirichlet prior on the per-document topic distributions,
    • β is the parameter of the uniform Dirichlet prior on the per-topic word distribution.

The outermost plate represents all the variables related to a specific document, including , the topic distribution for document i.

The M in the corner of the plate indicates that the variables inside are repeated M times, once for each document.

The inner plate represents the variables associated with each of the  words in document i:  is the topic for the jth word in document i, and  is the actual word used.

The N in the corner represents the repetition of the variables in the inner plate  times, once for each word in document i.

    • The circle representing the individual words is shaded, indicating that each  is observable, and
    • the other circles are empty, indicating that the other variables are latent variables.

The directed edges between variables indicate dependencies between the variables: for example, each  depends on  and β.

[PGM] Temporal Models的更多相关文章

  1. 本人AI知识体系导航 - AI menu

    Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习 ...

  2. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  3. A Statistical View of Deep Learning (IV): Recurrent Nets and Dynamical Systems

    A Statistical View of Deep Learning (IV): Recurrent Nets and Dynamical Systems Recurrent neural netw ...

  4. 论文笔记:语音情感识别(三)手工特征+CRNN

    一:Emotion Recognition from Human Speech Using Temporal Information and Deep Learning(2018 InterSpeec ...

  5. Machine Learning Basic Knowledge

    常用的数据挖掘&机器学习知识(点) Basis(基础): MSE(MeanSquare Error 均方误差),LMS(Least MeanSquare 最小均方),LSM(Least Squ ...

  6. stanford推荐阅读目录

    stanford deep learning 网站上推荐的阅读目录: UFLDL Recommended Readings   If you're learning about UFLDL (Unsu ...

  7. [PGM] What is Probabalistic Graphical Models

    学术潜规则: 概率图模型提出的意义在于将过去看似零散的topic/model以一种统一的方式串联了起来,它便于从整体上看待这些问题,而非具体解决了某个细节. 举个例子:梯度下降,并非解决神经网络收敛问 ...

  8. 使用 LaTeX 绘制 PGM(Probabilistic Graphical Models)中的贝叶斯网络(bayesian networks)

    Software for drawing bayesian networks (graphical models) 这里需要调用 latex 中的绘图库:TikZ and PGF. 注意,下述 tex ...

  9. PRML读书会第八章 Graphical Models(贝叶斯网络,马尔科夫随机场)

    主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:52:10 今天的内容主要是: 1.贝叶斯网络和马尔科夫随机场的概念,联合概率分解,条件独立表示:2.图的概率推断in ...

随机推荐

  1. 20172302 《Java软件结构与数据结构》第一周学习总结

    2018下半年学习总结博客总目录:第一周 教材学习内容总结 第一章 概述 1.软件质量 软件工程(Software Engineering)是一门关于高质量软件开发的技术和理论的学科. 软件质量从以下 ...

  2. Standard Series Values in a Decade for Resistances and Capacitances E24 E48 E96

    E3     50% tolerance (no longer used)E6     20% tolerance (now seldom used)E12   10% toleranceE24    ...

  3. 实战:mysql统计指定架构的全部表的数据和索引大小情况-v2

    PS:第一个版本号里未做输入的schema_name和table_name推断,改动了一下!再次share! #统计指定架构的全部表的数据和索引大小情况 #tablesize.sh #!/bin/sh ...

  4. Delphi识别读取验证码

    unit OCR; interface uses Windows, SysUtils, Graphics, Classes, PNGImage, GIFImage, JPEG, Math, Asphy ...

  5. 使用Linux(CentOS)搭建SVN服务器全攻略

    虽然在windows上搭建SVN很简单,但是效能却不高,这当然是和linux相比了.然而在linux上搭建SVN却非常繁琐,所以今天这篇文章就来一步一步教您如何在Centos上搭建SVN 安装 #yu ...

  6. PHP内置的预定义常量大全

    URL:http://www.php.net/manual/en/reserved.constants.php 预定义常量:核心预定义常量,标准预定义常量----------------------- ...

  7. linux使用pam_tally2.so模块限制登录3次失败后禁止5分钟

    在线上的服务器有时需要限制用户登录次数.这个功能可以通过pam的pam_tally2.so模块来实现 PAM模块是用sun提出的一种认证机制 pam_tally2.so模块 一.格式 pam_tall ...

  8. maven超级pom内容

    1.位置 2.内容 <?xml version="1.0" encoding="UTF-8"?> <!-- Licensed to the A ...

  9. MySQL数据切分的相关概念和原理详解

    对于数据切分,我们可能还不是很熟悉,但是它对于MySQL数据库来说也是相当重要的一门技术,本文我们就详细介绍一下MySQL数据库的数据切分的相关知识,接下来就让我们一起来了解一下这部分内容. 什么是数 ...

  10. awk学习[参考转载]

    一.基本示例 1.last -n 5 | awk '{print $1}'   $0代表全部 2.last -n 5 | awk -F:  '{print $1}'    -F代表设置分割符, :代表 ...