这里的一些东西只是将过去已有的东西用PGM解释了一遍,但优势还是明显的,对整体认识有帮助。

Video: https://www.youtube.com/watch?v=ogs4Oj8KahQ&index=13&list=PL50E6E80E8525B59C

3 - 1 - Overview of Template Models

3 - 2 - Temporal Models

3 - 3 - Temporal Models - HMMs

3 - 4 - Plate Models (以下主要是此内容)

DBM

动态BM其实就是加入了时间这个变脸,然后随着时间的变化,原有的节点会产生状态转移这样的过程。

Nested Plates & Overlapping Plates

  

左:一个courses框框可以包含很多个students框框。

右:如此一来,Courses框框的Difficulty就不是共享模式了。

结合后的效果如下:

意义在于:

Parameters and structure are reused within a BN and across different BNs.

Collective Inference

一个推断思维的例子:

学生选择第二第三课程,分低;但他的第一课程,分高;

那么,第一课程可能真的简单。

Plate notation

In Bayesian inferenceplate notation is a method of representing variables that repeat in a graphical model.

Instead of drawing each repeated variable individually, a plate or rectangle is used to group variables into a subgraph that repeat together, and a number is drawn on the plate to represent the number of repetitions of the subgraph in the plate.

The assumptions are that

    • the subgraph is duplicated that many times,
    • the variables in the subgraph are indexed by the repetition number, and
    • any links that cross a plate boundary are replicated once for each subgraph repetition.

In this example, we consider Latent Dirichlet allocation, a Bayesian network that models how documents in a corpus are topically related. There are two variables not in any plate:

    • α is the parameter of the uniform Dirichlet prior on the per-document topic distributions,
    • β is the parameter of the uniform Dirichlet prior on the per-topic word distribution.

The outermost plate represents all the variables related to a specific document, including , the topic distribution for document i.

The M in the corner of the plate indicates that the variables inside are repeated M times, once for each document.

The inner plate represents the variables associated with each of the  words in document i:  is the topic for the jth word in document i, and  is the actual word used.

The N in the corner represents the repetition of the variables in the inner plate  times, once for each word in document i.

    • The circle representing the individual words is shaded, indicating that each  is observable, and
    • the other circles are empty, indicating that the other variables are latent variables.

The directed edges between variables indicate dependencies between the variables: for example, each  depends on  and β.

[PGM] Temporal Models的更多相关文章

  1. 本人AI知识体系导航 - AI menu

    Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习 ...

  2. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  3. A Statistical View of Deep Learning (IV): Recurrent Nets and Dynamical Systems

    A Statistical View of Deep Learning (IV): Recurrent Nets and Dynamical Systems Recurrent neural netw ...

  4. 论文笔记:语音情感识别(三)手工特征+CRNN

    一:Emotion Recognition from Human Speech Using Temporal Information and Deep Learning(2018 InterSpeec ...

  5. Machine Learning Basic Knowledge

    常用的数据挖掘&机器学习知识(点) Basis(基础): MSE(MeanSquare Error 均方误差),LMS(Least MeanSquare 最小均方),LSM(Least Squ ...

  6. stanford推荐阅读目录

    stanford deep learning 网站上推荐的阅读目录: UFLDL Recommended Readings   If you're learning about UFLDL (Unsu ...

  7. [PGM] What is Probabalistic Graphical Models

    学术潜规则: 概率图模型提出的意义在于将过去看似零散的topic/model以一种统一的方式串联了起来,它便于从整体上看待这些问题,而非具体解决了某个细节. 举个例子:梯度下降,并非解决神经网络收敛问 ...

  8. 使用 LaTeX 绘制 PGM(Probabilistic Graphical Models)中的贝叶斯网络(bayesian networks)

    Software for drawing bayesian networks (graphical models) 这里需要调用 latex 中的绘图库:TikZ and PGF. 注意,下述 tex ...

  9. PRML读书会第八章 Graphical Models(贝叶斯网络,马尔科夫随机场)

    主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:52:10 今天的内容主要是: 1.贝叶斯网络和马尔科夫随机场的概念,联合概率分解,条件独立表示:2.图的概率推断in ...

随机推荐

  1. 2017-2018-2 1723 『Java程序设计』课程 结对编程练习_四则运算第三周总结

    相关测试过程截图 测试了由中缀表达式转后缀表达式的Junit测试,分别进行了整数的和分数的,测试成功截图 由于生成问题和计算问题中,问题都是随机产生的,暂时不会进行Junit测试,故没有进行,但应是正 ...

  2. centos 7 秘钥分发

    生成秘钥 [root@node1 ~]# ssh-keygen 查看秘钥 [root@node1 ~]# ls .ssh/id_rsa* .ssh/id_rsa .ssh/id_rsa.pub 将秘钥 ...

  3. UIProgressView进度条

    //非原创 UIProgressView顾名思义用来显示进度的,如音乐,视频的播放进度,和文件的上传下载进度等. 下面以一个简单的实例来介绍UIprogressView的使用. @interface  ...

  4. index-document-shard

    1.index.shard.document理解: a.每个index包含有多个document,index采用数据路由将document存放在shard中, b.算法(数据路由): shard = ...

  5. DirectUI消息循环的简单封装

      一.真窗体和假窗体 首先在DirectWindow内部创建一个真窗体(基于WTL),可以接收消息 class CMessageWindow : public CWindowImpl< CMe ...

  6. Linux kernel engineer--trace

    http://oliveryang.net/ https://github.com/yangoliver

  7. Android典型界面设计——FragmentTabHost+Fragment实现底部tab切换

    一.问题描述 在上次博文中,我们使用RadioGroup+ViewPage+Fragmen实现了顶部滑动导航(查看文章:http://www.cnblogs.com/jerehedu/p/460759 ...

  8. 【Little Demo】从简单的Tab标签到Tab图片切换

    Tab标签切换效果是比较流行的一种网站页面布局,视觉表现为美观大方,通过标签展示内容.目前在各大网站都有存在这种效果.例如:淘宝的黄金位置使用Tab标签切换效果,网易新闻等. 1.简单的 Tab 标签 ...

  9. 树莓派(RespberryPi)安装手记

    购买了两台树莓派,显示器接口是HDMI的,所以需要HDMI高清线连接到显示器,再加上SD卡做硬盘以及无线USB-WIFI,就可以玩一玩树莓派这个小东西了.以下是安装手记. 首先是制作“启动光盘”,其实 ...

  10. 谷歌Chrome浏览器无法安装插件的解决方法

    Chrome浏览器已替代了个人多年使用的遨游浏览器,但众所周知,国内的环境无法正常登录谷歌账户.无法访问应用商店,而Chrome主版本号大于66的只能从Chrome应用商店下载并安装插件,这不是死结吗 ...