新词发现

本“新词发现”模块基于信息熵和互信息两种算法,可以在无语料的情况下提取一段长文本中的词语,并支持过滤掉系统中已存在的“旧词”,得到新词列表。

调用方法

静态方法

一句话静态调用接口已经封装到HanLP中:

/**

* 提取词语

*

* @param text 大文本

* @param size 需要提取词语的数量

* @return 一个词语列表

*/

public static List<WordInfo> extractWords(String text, int size)

/**

* 提取词语

*

* @param reader 从reader获取文本

* @param size   需要提取词语的数量

* @return 一个词语列表

*/

public static List<WordInfo> extractWords(BufferedReader reader, int size) throws IOException

/**

* 提取词语(新词发现)

*

* @param text         大文本

* @param size         需要提取词语的数量

* @param newWordsOnly 是否只提取词典中没有的词语

* @return 一个词语列表

*/

public static List<WordInfo> extractWords(String text, int size, boolean newWordsOnly)

/**

* 提取词语(新词发现)

*

* @param reader       从reader获取文本

* @param size         需要提取词语的数量

* @param newWordsOnly 是否只提取词典中没有的词语

* @return 一个词语列表

*/

public static List<WordInfo> extractWords(BufferedReader reader, int size, boolean newWordsOnly) throws IOException

调用示例请参考com.hankcs.demo.DemoNewWordDiscover。 值得注意的是,在计算资源允许的情况下,文本越长,结果质量越高。对于一些零散的文章,应当合并为整个大文件传入该算法。

高级参数

根据语料的长度或用词的不同,默认的参数有可能不能得到最佳的结果。我们可以通过构造不同的NewWordDiscover调整提取算法。该构造函数如下:

/**

* 构造一个新词识别工具

* @param max_word_len 词语最长长度

* @param min_freq 词语最低频率

* @param min_entropy 词语最低熵

* @param min_aggregation 词语最低互信息

* @param filter 是否过滤掉HanLP中的词库中已存在的词语

*/

public NewWordDiscover(int max_word_len, float min_freq, float min_entropy, float min_aggregation, boolean filter)

其中

· max_word_len控制识别结果中最长的词语长度,默认值是4;该值越大,运算量越大,结果中出现短语的数量也会越多。

· min_freq控制结果中词语的最低频率,低于该频率的将会被过滤掉,减少一些运算量。由于结果是按照频率排序的,所以该参数其实意义不大。

· min_entropy控制结果中词语的最低信息熵的值,一般取0.5左右。该值越大,越短的词语就越容易被提取出来。

· min_aggregation控制结果中词语的最低互信息值,一般取50到200.该值越大,越长的词语就越容易被提取出来,有时候会出现一些短语。

· filter设为true的时候将使用内部词库过滤掉“旧词”。

Pyhanlp自然语言处理中的新词识别的更多相关文章

  1. 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)

    转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...

  2. 自然语言处理中的语言模型预训练方法(ELMo、GPT和BERT)

    自然语言处理中的语言模型预训练方法(ELMo.GPT和BERT) 最近,在自然语言处理(NLP)领域中,使用语言模型预训练方法在多项NLP任务上都获得了不错的提升,广泛受到了各界的关注.就此,我将最近 ...

  3. zz从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史

    从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么 ...

  4. (转)注意力机制(Attention Mechanism)在自然语言处理中的应用

    注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html  近年来,深度 ...

  5. paip.提升中文分词准确度---新词识别

    paip.提升中文分词准确度---新词识别 近来,中文每年大概出现800---1仟个新的词.. 60%的分词错误是由新词导致的 作者Attilax  艾龙,  EMAIL:1466519819@qq. ...

  6. 注意力机制(Attention Mechanism)在自然语言处理中的应用

    注意力机制(Attention Mechanism)在自然语言处理中的应用 近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了 ...

  7. 自然语言处理中的自注意力机制(Self-attention Mechanism)

    自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力 ...

  8. 自然语言处理中的N-Gram模型

    N-Gram(有时也称为N元模型)是自然语言处理中一个非常重要的概念,通常在NLP中,人们基于一定的语料库,可以利用N-Gram来预计或者评估一个句子是否合理.另外一方面,N-Gram的另外一个作用是 ...

  9. (zhuan) 自然语言处理中的Attention Model:是什么及为什么

    自然语言处理中的Attention Model:是什么及为什么 2017-07-13 张俊林 待字闺中 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model( ...

随机推荐

  1. date简述

    Date 定义时间和日期的类   java.util.Date 1s=1000ms; 时间的原点:公元1970年1月1日 00点00分00秒: public class DateDemo { publ ...

  2. SpringBoot2静态资料访问

    在SpringBoot2内要继承WebMvcConfigurationSupport并重写addResourceHandlers方法才能访问到静态资料. @Configuration public c ...

  3. JAVA线程sleep与wait区别

    sleep就是正在执行的线程主动让出cpu,cpu去执行其他线程,在sleep指定的时间过后,cpu才会回到这个线程上继续往下执行,如果当前线程进入了同步锁,sleep方法并不会释放锁,即使当前线程使 ...

  4. 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6154 CaoHaha's staff(几何找规律)

    Problem Description "You shall not pass!"After shouted out that,the Force Staff appered in ...

  5. js- caller、 callee

    caller 返回一个对函数的引用,该函数调用了当前函数.    functionName.caller     functionName对象 是所执行函数的名称.  说明        对于函数来说 ...

  6. 特征选择之Chi卡方检验

    特征选择之Chi卡方检验 卡方值越大,说明对原假设的偏离越大,选择的过程也变成了为每个词计算它与类别Ci的卡方值,从大到小排个序(此时开方值越大越相关),取前k个就可以. 针对英文纯文本的实验结果表明 ...

  7. 直接复制浏览器Request headers中的进行copyheaders进行转换

    先导入函数库 from copyheaders import headers_raw_to_dict 然后复制请求头 headers = b'''accept: application/json, t ...

  8. Unity 3D-AR开发-Vuforia教程手册

    Unity 开发AR之 Vuforia 本文提供全流程,中文翻译. Chinar 坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) Chinar - ...

  9. JSON JAVA 总结

    1.如下是我所用json第三方jar包的maven坐标 <!--可引用的jar--> <dependency> <groupId>net.sf.json-lib&l ...

  10. POJ3070 Fibonacci(矩阵快速幂加速递推)【模板题】

    题目链接:传送门 题目大意: 求斐波那契数列第n项F(n). (F(0) = 0, F(1) = 1, 0 ≤ n ≤ 109) 思路: 用矩阵乘法加速递推. 算法竞赛进阶指南的模板: #includ ...