CodeForces985G Team Players
2 seconds
256 megabytes
standard input
standard output
There are nn players numbered from 00 to n−1n−1 with ranks. The ii-th player has rank ii.
Players can form teams: the team should consist of three players and no pair of players in the team should have a conflict. The rank of the team is calculated using the following algorithm: let ii, jj, kk be the ranks of players in the team and i<j<ki<j<k, then the rank of the team is equal to A⋅i+B⋅j+C⋅kA⋅i+B⋅j+C⋅k.
You are given information about the pairs of players who have a conflict. Calculate the total sum of ranks over all possible valid teams modulo 264264.
The first line contains two space-separated integers nn and mm (3≤n≤2⋅1053≤n≤2⋅105, 0≤m≤2⋅1050≤m≤2⋅105) — the number of players and the number of conflicting pairs.
The second line contains three space-separated integers AA, BB and CC (1≤A,B,C≤1061≤A,B,C≤106) — coefficients for team rank calculation.
Each of the next mm lines contains two space-separated integers uiui and vivi (0≤ui,vi<n,ui≠vi0≤ui,vi<n,ui≠vi) — pair of conflicting players.
It's guaranteed that each unordered pair of players appears in the input file no more than once.
Print single integer — the total sum of ranks over all possible teams modulo 264264.
4 0
2 3 4
64
4 1
2 3 4
1 0
38
6 4
1 5 3
0 3
3 5
5 4
4 3
164
In the first example all 44 teams are valid, i.e. triples: {0, 1, 2}, {0, 1, 3}, {0, 2, 3} {1, 2, 3}.
In the second example teams are following: {0, 2, 3}, {1, 2, 3}.
In the third example teams are following: {0, 1, 2}, {0, 1, 4}, {0, 1, 5}, {0, 2, 4}, {0, 2, 5}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}.
AC代码为:
#include<bits/stdc++.h>
#define rep(i,x,y) for(register int i = x ;i <= y; ++ i)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
template<typename T>inline void read(T&x)
{
char c;int sign = 1;x = 0;
do { c = getchar(); if(c == '-') sign = -1; }while(!isdigit(c));
do { x = x * 10 + c - '0'; c = getchar(); }while(isdigit(c));
x *= sign;
}
const int N = 2e5 + 20;
ull a,b,c,n,m;
ull u[N],v[N],ans;
ull s1[N],s2[N],s3[N];
vector<int> g[N],f[N];
int main()
{
read(n); read(m);
read(a); read(b); read(c);
rep(i,1,m)
{
read(u[i]); read(v[i]);
if(u[i] > v[i]) swap(u[i],v[i]);
g[u[i]].push_back(v[i]);
f[v[i]].push_back(u[i]);
}
rep(i,0,n-1)
{
ull x = n - i - 1;
ans += a * i * (x * (x - 1) / 2);
ans += b * i * i * x;
ans += c * i * ((ull)i * (i - 1) / 2);
}
rep(i,1,m)
{
s1[ 0 ] += 1;
s1[u[i]] -= 1;
s1[ u[i] ] += n - u[i] - 2;
s1[u[i]+1] -= n - u[i] - 2;
s2[u[i]+1] += 1;
s2[ v[i] ] -= 1;
s2[ u[i] ] += u[i];
s2[u[i]+1] -= u[i];
s2[ v[i] ] += n - v[i] - 1;
s2[v[i]+1] -= n - v[i] - 1;
s3[v[i]+1] += 1;
s3[ n ] -= 1;
s3[ v[i] ] += v[i] - 1;
s3[v[i]+1] -= v[i] - 1;
}
rep(i,1,n)
s1[i] += s1[i - 1],
s2[i] += s2[i - 1],
s3[i] += s3[i - 1];
rep(i,0,n - 1)
{
ans -= a * i * s1[i];
ans -= b * i * s2[i];
ans -= c * i * s3[i];
}
rep(i,0,n-1) sort(g[i].begin(),g[i].end());
rep(i,0,n-1) sort(f[i].begin(),f[i].end());
rep(i,0,n-1)
{
int sz = g[i].size();
rep(j,0,sz - 1)
{
int k = j + 1;
while(k < sz)
{
ans += a * i;
ans += b * g[i][j];
ans += c * g[i][k];
k ++ ;
}
int SZ = g[g[i][j]].size();
rep(q,0,SZ - 1)
{
ans += a * i;
ans += b * g[i][j];
ans += c * g[g[i][j]][q];
}
}
sz = f[i].size();
rep(j,0,sz - 1)
{
int k = j + 1;
while(k < sz)
{
ans += a * f[i][j];
ans += b * f[i][k];
ans += c * i;
++ k;
}
}
}
rep(i,0,n-1)
{
int sz = g[i].size();
rep(j,0,sz - 1)
{
int t = j + 1,k = 0;
int SZ = g[g[i][j]].size();
while(t < sz && k < SZ)
{
if(g[i][t] == g[g[i][j]][k])
{
ans -= a * i;
ans -= b * g[i][j];
ans -= c * g[i][t];
++ t; ++ k;
}
else if(g[i][t] < g[g[i][j]][k]) ++ t;
else ++ k;
}
}
}
cout << ans << endl;
return 0;
}
CodeForces985G Team Players的更多相关文章
- Codeforces 985G. Team Players
Description 有 \(n\) 个人 , \(m\) 对人有冲突 , 你要从这 \(n\) 个人中选出三个人成为一组 , 使得同一组的人不存在一对有冲突 题面 Solution 容斥 答案=总 ...
- BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)
题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...
- [CF985G]Team Players
题意:给出一个图,求$\sum\limits_{\substack{i\lt j\lt k\\\nexists(i,j),(j,k),(i,k)}}Ai+Bj+Ck$ 挺好的一道题==,就是稍微毒了点 ...
- Codeforces 985G - Team Players(三元环)
Codeforces 题目传送门 & 洛谷题目传送门 真·ycx 做啥题我就做啥题 考虑枚举 \(j\),我们预处理出 \(c1_i\) 表示与 \(i\) 相连的编号 \(<i\) 的 ...
- Ten Qualities of an Effective Team Player
If you were choosing team members for a business team in your organization, who would the best team ...
- Model--汇总
NSFileManager.NSURL.NSFileHandle.NSData.NSXMLParser.NSUserDefaults.NSKeyedArchiver.NSKeyedUnarchiver ...
- 《C#本质论》读书笔记(14)支持标准查询操作符的集合接口
14.2.集合初始化器 使用集合初始化器,程序员可以采用和数组相似的方式,在集合的实例化期间用一套初始的成员来构造这个集合. 如果没有集合初始化器,就只有在集合实例化后才能显示添加到集合中--例如 ...
- ng-repeat的group
http://blog.csdn.net/violet_day/article/details/17023219 一.obj包含 <!doctype html> <html ng- ...
- ios9基础知识(技能篇)
NSFileManager.NSURL.NSFileHandle.NSData.NSXMLParser.NSUserDefaults.NSKeyedArchiver.NSKeyedUnarchiver ...
随机推荐
- java多线程与线程并发三:线程同步通信
本文章内容整理自:张孝祥_Java多线程与并发库高级应用视频教程. 有些时候,线程间需要传递消息,比如下面这道面试题: 子线程循环10次,然后主线程循环100次,然后又回到子线程循环50次,然后再回到 ...
- 列转行pivot函数在SQL Sever里面和Oracle里面的用法区别
首先pivot是一个列转行的函数,反向用是unpivot(行转列). 在SQL sever中可以这么写 SELECT * FROM [TABLE] /*数据源*/ AS A PIVOT ( MAX/* ...
- 理解clientWidth,offsetWidth,clientLeft,offsetLeft,clientX,offsetX,pageX,screenX
1. clientWidth:表示元素的内部宽度,以像素计.该属性包括内边距,但不包括垂直滚动条(如果有).边框和外边距.(clientWidth = width + padding) 2. offs ...
- [LC]83题 Remove Duplicates from Sorted List(删除排序链表中的重复元素)(链表)
①英文题目 Given a sorted linked list, delete all duplicates such that each element appear only once. Exa ...
- 函数的prototype
1.函数的prototype属性 每一个函数都有一个prototype属性,默认指向object空对象(原型对象),每一个原型对象都有一个constructor属性,指向函数对象 2.给原型对象添加属 ...
- 【故障公告】数据库服务器 CPU 近 100% 引发的故障(源于 .NET Core 3.0 的一个 bug)
非常抱歉,这次故障给您带来麻烦了,请您谅解. 今天早上 10:54 左右,我们所使用的数据库服务(阿里云 RDS 实例 SQL Server 2016 标准版)CPU 突然飙升至 90% 以上,应用日 ...
- ZeroC ICE的远程调用框架 Slice如何帮助我们进行Ice异步编程(AMI,AMD)
Slice最大的用处就是为我们使用Ice进行编程,代劳绝大部分的重复性代码,并提供一些帮助性的框架代码,如用于AMI和AMD方式进行异步编程的回调框架. 当Slice不为我们生成代码时,我们仍然可以按 ...
- 从壹开始 [ Ids4实战 ] 之六 ║ 统一角色管理(上)
前言 书接上文,咱们在上周,通过一篇<思考> 性质的文章,和很多小伙伴简单的讨论了下,如何统一同步处理角色的问题,众说纷纭,这个我一会儿会在下文详细说到,而且我最终也定稿方案了.所以今天咱 ...
- k8s Ingress 理解和部署
目录 前言 Ingress 与 ingress-controller Ingress 部署 1.部署 ingress-controller 2.部署测试 web 服务 3.部署 Ingress 4.检 ...
- applicationContext-dao.xml 配置错误
https://www.captainbed.net/ 配置文件报错: 不允许有匹配 "[xX][mM][lL]" 的处理指令目标. 错误原因: 由于大部分都是搬砖,所以格式没注意 ...