损失函数

在逻辑回归建立过程中,我们需要一个关于模型参数的可导函数,并且它能够以某种方式衡量模型的效果。这种函数称为损失函数(loss function)。

损失函数越小,则模型的预测效果越优。所以我们可以把训练模型问题转化为最小化损失函数的问题。

损失函数有多种,此次介绍分类问题最常用的交叉熵(cross entropy)损失,并从信息论贝叶斯两种视角阐释交叉熵损失的内涵。

## 公式请查看https://blog.csdn.net/Ambrosedream/article/details/103379183

K-L散度与交叉熵

  • 随机变量Xk种不同的取值:,,​。 记X的取值​ 的概率为p(X=​) ,简写为P(​) .

  • 克劳德· 香农定义了信息的信息量:

    注:其中对数可以以任意合理数为底,如 2、e。使用不同的底数所得到的信息量之间相差一个常系数。

    若以2为底,信息量的单位是bit ,I(X=​ )是X = ​ 这条信息的自信息量(self-information) .

  • 自信息量I随着概率P(​)的图像变化如下:

    img

    自信息量背后的含义:信息中事件发生的概率越小,则信息量越大。

    举例:假如有人告诉你即将开奖的彩票中奖号码是777777777,这条信息的价值很高,类似事情发生概率极小。假如有人告诉你明天太阳会升起,这件事对你来说价值很低,但是他发生的概率却很高。所以我们会觉得彩票的开奖号信息量很大,太阳升起的信息量较小。

  • 我们令信息源X 取不同的值 ​ 的概率分布分别为​ .

  • 定义信息源 X的熵(entropy)为:

    H(p) = ​

  • 信息源由概率分布p描述,s所以熵是p的函数,熵的概念来自热力学。H(p)又称平均信息。

  • 根据公式我们可以看出,H(p)是将X所有取值的自信息量以概率为权重取平均。

  • 对于两个概率分布p和q, 定义p和q的K-L散度(kullback-leibler divergence)是:

  • K-L散度是​ 在分布p上的期望。(注:KLD(p||q) ​ KLD(q||p))

  • 根据上述公式我们可以发现,当和​ 相等时,​ 所以KLD散度等于0。所以说两个同分布的KLD散度为0,所以我们一般使用KLD描述两个概率分布之间的相似度。

  • 我们定义交叉熵:

  • 所以根据上述两式,有:

    H(p,q) = KLD(p||q) + H(p)

  • 分布p和q的交叉熵等于它们的K-L散度加上p的熵。现在假设分布p固定,则H(p,q)与KLD(p||q)之间只相差一个常数H(p),所以此时H(p,q)也可以被用来描述两个分部之间的相似程度。即:H(p,q)越小,p,q越相似。

  1. 对于一个训练样本{​ } 可以标签​ 给出了一个类别的概率分布:

  2. ,,​

  3. 我们将逻辑回归模型的输出看做一个分布Q:

  4. ,​

  5. 所以我们希望回归模型的准确率尽可能地高,即是希望分布Q与训练集P的分布尽可能地相似,由此我们可以使用交叉熵来描述输出分布于标签分布的相似度,也就是我们所说的损失函数(loss)

上式是模型在一个样本的交叉熵,其值越小,预测分布于标签给出分布越相似。

上式是样本的平均交叉熵,作为模型的损失函数。

损失函数--KL散度与交叉熵的更多相关文章

  1. 【机器学习基础】熵、KL散度、交叉熵

    熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择 ...

  2. 第五节,损失函数:MSE和交叉熵

    损失函数用于描述模型预测值与真实值的差距大小,一般有两种比较常见的算法——均值平方差(MSE)和交叉熵. 1.均值平方差(MSE):指参数估计值与参数真实值之差平方的期望值. 在神经网络计算时,预测值 ...

  3. 信息论相关概念:熵 交叉熵 KL散度 JS散度

    目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度 ...

  4. KL散度=交叉熵-熵

    熵:可以表示一个事件A的自信息量,也就是A包含多少信息. KL散度:可以用来表示从事件A的角度来看,事件B有多大不同. 交叉熵:可以用来表示从事件A的角度来看,如何描述事件B. 一种信息论的解释是: ...

  5. 从香农熵到手推KL散度

    信息论与信息熵是 AI 或机器学习中非常重要的概念,我们经常需要使用它的关键思想来描述概率分布或者量化概率分布之间的相似性.在本文中,我们从最基本的自信息和信息熵到交叉熵讨论了信息论的基础,再由最大似 ...

  6. 【深度学习】K-L 散度,JS散度,Wasserstein距离

    度量两个分布之间的差异 (一)K-L 散度 K-L 散度在信息系统中称为相对熵,可以用来量化两种概率分布 P 和 Q 之间的差异,它是非对称性的度量.在概率学和统计学上,我们经常会使用一种更简单的.近 ...

  7. 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

    最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...

  8. 深度学习中交叉熵和KL散度和最大似然估计之间的关系

    机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...

  9. 交叉熵cross entropy和相对熵(kl散度)

    交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relativ ...

随机推荐

  1. IUSEP研修报告

    目录 Introduction Alberta - Edmonton University of Alberta IUSEP Schoolwork and Project Principle of F ...

  2. LinuxMint自定义快捷键

    如图

  3. 远程桌面MATLAB启动失败问题解决

    博客:博客园 | CSDN | blog 远程桌面打开MATLAB会报错,解决办法,打开matlab的licenses路径,如matlab/R2017b/licenses/,路径下存有license文 ...

  4. JSON2ABAPType:根据JSON数据结构生成ABAP类型定义

    一图表明本文将要介绍的工具: JSON是常见的数据格式,经常用于接口开发.ABAP开发者通常使用/ui2/cl_json来把JSON数据转换为相应的ABAP类型. 在转换前,必须要定义相应的ABAP类 ...

  5. 【第二版】高仿Android网易云音乐企业级项目实战课程介绍

    这是一门付费Android项目课程,我们只做付费课程:同时也感谢大家的支持. 这一节,对本课程做一个简单介绍,以及放一些项目效果图,如果想直接查看项目视频演示,可以直接在腾讯课堂查看[高仿Androi ...

  6. 百度大脑UNIT3.0智能对话技术全面解析

    智能客服.智能家居.智能助手.智能车机.智能政务……赋予产品智能对话能力是提升产品智能化体验.高效服务的重要手段,已经开始被越来越多的企业关注并布局.然而,智能对话系统搭建涉及NLP.知识图谱.语音等 ...

  7. centos7配置Memcached

    Memcached是一套分布式的高速缓存系统,用于提升网站访问速度,尤其对于一些大型的.需要频繁访问数据库的网站,访问速度提升效果十分显著. 1.安装memcached yum install mem ...

  8. C#开发微信小程序(三)

    导航:C#开发微信小程序系列 关于小程序项目结构,框架介绍,组件说明等,请查看微信小程序官方文档,关于以下贴出来的代码部分我只是截取了一些片段,方便说明问题,如果需要查看完整源代码,可以在我的项目库中 ...

  9. Js实现回车登录,监听回车事件

    需求 项目有个回车登录功能,在此记录下 实现 我们应该监听当前登录页面的所有回车操作. $("body").keydown(function () { var yzmStatus ...

  10. springboot~yml里的自定义配置~续

    之前写了关于读取自定义配置的文章springboot~yml里的自定义配置,而今天主要说一下对复杂配置信息的读取方法,我们简单的配置用@Value注解就可以了,而结构复杂的一般使用@Configura ...