PCA主成分分析(最大投影方差)
PCA简介:
从n维数据中提取最能代表这组数据的m个向量,也就是对数据进行降维(n->m),提取特征。
目标:
找到一个向量\(\mu\),使n个点在其上的投影的方差最大(投影后的数据越不集中,就说明每个向量彼此之间包含的相似信息越少,从而实现数据降维)
前提假设:
总的数据:
\[A = (x_1, x_2, \cdots , x_n)\]
\(X\)的协方差:
\[C = Cov(X) = \frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})(x_i-\overline{x})^T\]
向量\(\mu\):
\[|\mu| = 1 \Rightarrow \mu^T\mu = 1\]
证明:
易知\(x_i\)在\(\mu\)上的投影为\[(x_i-\overline{x})^T\mu\]
因为\((x_i-\overline{x})\)均值为0, 所以记其方差\(J\)为
\[\frac{1}{n}\sum_{i=1}^n((x_i-\overline{x})^T\mu)^2\]
又因为上式平方项中为标量,故可以将\(J\)改写为
\[\frac{1}{n}\sum_{i=1}^n((x_i-\overline{x})^T\mu)^T((x_i-\overline{x})^T\mu)\]
化简,得
\[\frac{1}{n}\sum_{i=1}^n\mu^T(x_i-\overline{x})(x_i-\overline{x})^T\mu\]
发现中间两项是协方差,带入,得
\[\mu^TC\mu\]
接下来就是一个在给定约束条件\(\mu^T\mu\) = 1,下的最优化问题,这里使用Lagrange乘数法求解
构造Lagrange函数\[L(\mu, C, \lambda) = \mu^TC\mu + \lambda(1-\mu^T\mu)\]
关于\(\mu\)求偏导,得
\[\frac{\partial J}{\partial \mu} = 2C\mu - 2\lambda\mu\]
令其等于0,得
\[C\mu = \lambda\mu\]
是不是有点眼熟?
没错,\(\lambda\)就是\(C\)的特征值(eigen-value),\(\mu\)就是\(C\)的特征向量(eigen-vector)
因此,这个我们要求的向量\(\mu\)就是\(C\)的特征向量(要m个,就取前m个最大的特征值对应的特征向量)
PCA主成分分析(最大投影方差)的更多相关文章
- 【建模应用】PCA主成分分析原理详解
原文载于此:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识发现 ...
- 机器学习之PCA主成分分析
前言 以下内容是个人学习之后的感悟,转载请注明出处~ 简介 在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的 信息较多.在很 ...
- PCA主成分分析Python实现
作者:拾毅者 出处:http://blog.csdn.net/Dream_angel_Z/article/details/50760130 Github源代码:https://github.com/c ...
- PCA(主成分分析)方法浅析
PCA(主成分分析)方法浅析 降维.数据压缩 找到数据中最重要的方向:方差最大的方向,也就是样本间差距最显著的方向 在与第一个正交的超平面上找最合适的第二个方向 PCA算法流程 上图第一步描述不正确, ...
- PCA主成分分析(上)
PCA主成分分析 PCA目的 最大可分性(最大投影方差) 投影 优化目标 关键点 推导 为什么要找最大特征值对应的特征向量呢? 之前看3DMM的论文的看到其用了PCA的方法,一开始以为自己对于PCA已 ...
- PCA 主成分分析(Principal components analysis )
问题 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到一个数学系的本科生期末考试成绩单,里面有三列, ...
- 特征脸(Eigenface)理论基础-PCA(主成分分析法)
在之前的博客 人脸识别经典算法一:特征脸方法(Eigenface) 里面介绍了特征脸方法的原理,但是并没有对它用到的理论基础PCA做介绍,现在做补充.请将这两篇博文结合起来阅读.以下内容大部分参考 ...
- 用PCA(主成分分析法)进行信号滤波
用PCA(主成分分析法)进行信号滤波 此文章从我之前的C博客上导入,代码什么的可以参考matlab官方帮助文档 现在网上大多是通过PCA对数据进行降维,其实PCA还有一个用处就是可以进行信号滤波.网上 ...
- PCA(主成分分析)的简单理解
PCA(Principal Components Analysis),它是一种“投影(projection)技巧”,就是把高维空间上的数据映射到低维空间.比如三维空间的一个球,往坐标轴方向投影,变成了 ...
- 『科学计算_理论』PCA主成分分析
数据降维 为了说明什么是数据的主成分,先从数据降维说起.数据降维是怎么回事儿?假设三维空间中有一系列点,这些点分布在一个过原点的斜面上,如果你用自然坐标系x,y,z这三个轴来表示这组数据的话,需要使用 ...
随机推荐
- CSRF(Cross-site request forgery)跨站请求伪造
CSRF是什么 CSRF(Cross-site request forgery)跨站请求伪造,也被称为"One Click Attack"或者Session Riding,通常缩写 ...
- Kafka use zkCli.sh to check topic offset on linux
> ./zkCli.sh -server zk1host:port,zk2host:port,zk3host:port >help ZooKeeper -server host:port ...
- matlab 降维工具 转载【https://blog.csdn.net/tarim/article/details/51253536】
降维工具箱drtool 这个工具箱的主页如下,现在的最新版本是2013.3.21更新,版本v0.8.1b http://homepage.tudelft.nl/19j49/Matlab_Toolb ...
- mac本地搭建svn
mac系统默认已经安装了svn,我们只需要配置并开启就可以了. 首先我们可以验证一下是否安装了svn,打开终端,输入命令 svnserve —version
- k 近邻算法解决字体反爬手段|效果非常好
字体反爬,是一种利用 CSS 特性和浏览器渲染规则实现的反爬虫手段.其高明之处在于,就算借助(Selenium 套件.Puppeteer 和 Splash)等渲染工具也无法拿到真实的文字内容. 这种反 ...
- 「Python 编程」编码实现网络请求库中的 URL 解析器
摘要:怎么写出更短的代码并不是这次要讨论的话题.今天我们来研究一下:运行代码的计算机是如何找到目标服务器的? 相信各位 Python 开发者都用过 Requests 库,有些朋友还用过 WebSock ...
- Unknown class XXViewController in Interface Builder file.”问题处理
“Unknown class XXViewController in Interface Builder file.”问题处理 在静态库中写了一个XXViewController类,然后在主工程的 ...
- iOS导出远程推送所需要的P12 或pem文件
http://www.saitjr.com/ios/ios-export-remote-notification-p12-pem-file.html iOS导出远程推送所需要的P12 或pem文件 h ...
- Spring Data初步--整合Hibernate
Spring Data课程中的技术介绍 Hibernate: Hibernate 是一个开放源代码的对象关系映射框架,它对 JDBC 进行了非常轻量级的对象封装,它将 pojo 与数据库表建立映射关系 ...
- 数据库Oracle通用函数
通用函数:可用于任意数据类型,并且适用于空值.• NVL (expr1, expr2) • NVL2 (expr1, expr2, expr3) • NULLIF (expr1, expr2) • C ...