Sumsets

直接翻译了

Descriptions

Farmer John 让奶牛们找一些数加起来等于一个给出的数N。但是奶牛们只会用2的整数幂。下面是凑出7的方式

1) 1+1+1+1+1+1+1 
2) 1+1+1+1+1+2 
3) 1+1+1+2+2 
4) 1+1+1+4 
5) 1+2+2+2 
6) 1+2+4

帮助FJ找到 N的分配数 (1 <= N <= 1,000,000).


Input

N


Output

排列方式总数。由于这个数可能很大,只需要保留最后9位


Sample Input

7

Sample Output

6

Hint

打表的会被系统自动识别判为WA

题目链接

https://vjudge.net/problem/POJ-2229

处理出2的幂次方的所有的数字,当做物品,每个物品次数不限,求凑出体积为N的方案数

类似完全背包,先枚举物品,再正序枚举体积,转移状态dp[i][j]表示前i件物品凑出的体积为j的方案数

dp[i][j] = dp[i - 1][j] + dp[i - 1][j - w[i]]

1<<i 相当于 2i

AC代码

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#define Mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define MEM(x,y) memset(x,y,sizeof(x))
#define Maxn 1000005
using namespace std;
int n;
int w[Maxn];
int cnt=;
int dp[Maxn];
int main()
{
scanf("%d",&n);
for(int i=;(<<i)<=n;i++)//构造所有物品
w[cnt++]=(<<i);
dp[]=;
for(int i=;i<cnt;i++)
for(int j=w[i];j<=n;j++)
dp[j]=(dp[j]+dp[j-w[i]])%;//取余 printf("%d\n",dp[n]);
return ;
}

【POJ - 2229】Sumsets(完全背包)的更多相关文章

  1. poj 2229 Sumsets 完全背包求方案总数

    Sumsets Description Farmer John commanded his cows to search for different sets of numbers that sum ...

  2. poj 2229 【完全背包dp】【递推dp】

    poj 2229 Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 21281   Accepted: 828 ...

  3. POJ 2229 Sumsets(技巧题, 背包变形)

    discuss 看到有人讲完全背包可以过, 假如我自己做的话, 也只能想到完全背包了 思路: 1. 当 n 为奇数时, f[n] = f[n-1], 因为只需在所有的序列前添加一个 1 即可, 所有的 ...

  4. poj -2229 Sumsets (dp)

    http://poj.org/problem?id=2229 题意很简单就是给你一个数n,然后选2的整数幂之和去组成这个数.问你不同方案数之和是多少? n很大,所以输出后9位即可. dp[i] 表示组 ...

  5. POJ 2229 Sumsets

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 11892   Accepted: 4782 Descrip ...

  6. poj 2229 Sumsets(dp)

    Sumsets Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 400000/200000K (Java/Other) Total Sub ...

  7. POJ 2229 sumset ( 完全背包 || 规律递推DP )

    题意 : 给出一个数 n ,问如果使用 2 的幂的和来组成这个数 n 有多少种不同的方案? 分析 :  完全背包解法 将问题抽象==>有重量分别为 2^0.2^1.2^2…2^k 的物品且每种物 ...

  8. poj 2229 Sumsets DP

    题意:给定一个整数N (1<= N <= 1000000),求出以 N为和 的式子有多少个,式子中的加数只能有2的幂次方组成 如5 : 1+1+1+1+1.1+1+1+2.1+2+2.1+ ...

  9. poj 2229 Sumsets(dp 或 数学)

    Description Farmer John commanded his cows to search . Here are the possible sets of numbers that su ...

  10. poj 2229 Sumsets(记录结果再利用的DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 将一个数N分解为2的幂之和共有几种分法? 题解: 定义dp[ i ]为数 i 的 ...

随机推荐

  1. 数据结构&算法的引言+时间复杂度

    一.什么是计算机科学? 首先明确的一点就是计算机科学不仅仅是对计算机的研究,虽然计算机在科学发展的过程中发挥了重大的作用,但是它只是一个工具,一个没有灵魂的工具而已.所谓的计算机科学实际上是对问题.解 ...

  2. 基于modelform和ajax的注册

    forms文件 创建ModelForm组件 from django import forms from crm import models from django.core.exceptions im ...

  3. django基础知识之状态保持session:

    状态保持 http协议是无状态的:每次请求都是一次新的请求,不会记得之前通信的状态 客户端与服务器端的一次通信,就是一次会话 实现状态保持的方式:在客户端或服务器端存储与会话有关的数据 存储方式包括c ...

  4. F#周报2019年第28期

    新闻 FableConf门票开始贩售 Bolero的HTML模板支持热加载 Bolero从v0.4到v0.5的升级指南 完整的SAFE-Chat迁移至了Fable 2 为纯函数式3D图形生成领域专用语 ...

  5. Markdown下,上传图片问题

    最简单的方法: 1,登录qq 2,登录博客园,并打开博客园添加随笔的地方:如图: 3,选择需要截屏的地方,按住ctrl+alt+A截屏,然后在qq的发送栏内贴过去 4,鼠标左键按住不松开,然后拖到这里 ...

  6. Creating a Manager for Multiple Threads_翻译

    The previous lesson showed how to define a task that executes on a separate thread. If you only want ...

  7. android_MultiAutoCompleteTextView

    package cn.com.sxp;import android.app.Activity;import android.os.Bundle;import android.view.View;imp ...

  8. 使用GDAL实现DEM的地貌晕渲图(二)

    1. 问题 之前我在<使用GDAL实现DEM的地貌晕渲图(一)>这篇文章里面讲述了DEM晕渲图的生成原理与实现,大体上来讲是通过计算DEM格网点的法向量与日照方向的的夹角,来确定该格网点的 ...

  9. Java秒杀系统实战系列~构建SpringBoot多模块项目

    摘要:本篇博文是“Java秒杀系统实战系列文章”的第二篇,主要分享介绍如何采用IDEA,基于SpringBoot+SpringMVC+Mybatis+分布式中间件构建一个多模块的项目,即“秒杀系统”! ...

  10. kubernetes的volume的权限设置(属主和属组)

    apiVersion: v1kind: Podmetadata: name: hello-worldspec:  containers:  # specification of the pod's c ...