昨天我们学习了支持向量机基本概念,重申数学推导原理的重要性并向大家介绍了一篇非常不错的文章。今天,我们使用Scikit-Learn中的SVC分类器实现SVM。我们将在day16使用kernel-trick实现SVM。

导入库

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```   导入数据
数据集依然是Social_Network_Ads,下载链接:
https://pan.baidu.com/s/1cPBt2DAF2NraOMhbk5-_pQ
提取码:vl2g

dataset = pd.read_csv('Social_Network_Ads.csv') X = dataset.iloc[:, [2, 3]].values y = dataset.iloc[:, 4].values

拆分数据集为训练集合和测试集合

from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)


特征量化

from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.fit_transform(X_test)


适配SVM到训练集合

from sklearn.svm import SVC classifier = SVC(kernel = 'linear', random_state = 0) classifier.fit(X_train, y_train)


预测测试集合结果

y_pred = classifier.predict(X_test)

创建混淆矩阵

from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred)

![](http://pv7b47pv6.bkt.clouddn.com/FiCdEnYmLidmIiE5Pvq8JA1NmK7Z)

训练集合结果可视化

from matplotlib.colors import ListedColormap

X_set, y_set = X_train, y_train

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),

np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))

plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),

alpha = 0.75, cmap = ListedColormap(('red', 'green')))

plt.xlim(X1.min(), X1.max())

plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):

plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],

c = ListedColormap(('red', 'green'))(i), label = j)

plt.title('SVM (Training set)')

plt.xlabel('Age')

plt.ylabel('Estimated Salary')

plt.legend()

plt.show()


测试集合结果可视化

from matplotlib.colors import ListedColormap

X_set, y_set = X_test, y_test

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),

np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))

plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),

alpha = 0.75, cmap = ListedColormap(('red', 'green')))

plt.xlim(X1.min(), X1.max())

plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):

plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],

c = ListedColormap(('red', 'green'))(i), label = j)

plt.title('SVM (Test set)')

plt.xlabel('Age')

plt.ylabel('Estimated Salary')

plt.legend()

plt.show()

![](http://pv7b47pv6.bkt.clouddn.com/Fl1CH6uK47B4jZ667r-mvVSw7GXf)

100天搞定机器学习|Day13-14 SVM的实现的更多相关文章

  1. 100天搞定机器学习|Day16 通过内核技巧实现SVM

    前情回顾 机器学习100天|Day1数据预处理100天搞定机器学习|Day2简单线性回归分析100天搞定机器学习|Day3多元线性回归100天搞定机器学习|Day4-6 逻辑回归100天搞定机器学习| ...

  2. 100天搞定机器学习|Day22 机器为什么能学习?

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  3. 100天搞定机器学习|Day7 K-NN

    最近事情无比之多,换了工作.组队参加了一个比赛.和朋友搞了一些小项目,公号荒废许久.坚持是多么重要,又是多么艰难,目前事情都告一段落,我们继续100天搞定机器学习系列.想要继续做这个是因为,一方面在具 ...

  4. 100天搞定机器学习|Day9-12 支持向量机

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

  5. 100天搞定机器学习|Day17-18 神奇的逻辑回归

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  6. 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  7. 100天搞定机器学习|Day21 Beautiful Soup

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  8. 100天搞定机器学习|Day33-34 随机森林

    前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...

  9. 100天搞定机器学习|Day35 深度学习之神经网络的结构

    100天搞定机器学习|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习 ...

  10. 100天搞定机器学习|Day11 实现KNN

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

随机推荐

  1. java编程思想之面向对象

    面向对象和面向过程 面向对象(Object Oriented),简称OO,是软件开发方法的一种,我们都知道java是基于面向对象开发的,但是说到面向对象,我们不得不提一提面向过程开发,面向过程,又称结 ...

  2. ASP.NET Core on K8S学习初探(3)部署API到K8S

    在上一篇<基本概念快速一览>中,我们把基本的一些概念快速地简单地不求甚解地过了一下,本篇开始我们会将ASP.NET Core WebAPI部署到K8S,从而结束初探的旅程. Section ...

  3. 关于火狐浏览器设置cookie的一个问题

    最近发现我一个项目的网页,里面的cookie无法添加了,急的我瞪着我的PHP代码沉思了好久,我默认用的火狐浏览器,然而我默默的打开另一个叫360的浏览器,发现它的cookie是正常添加的. ... 难 ...

  4. jmeter分析性能报告时的误区

    概述 我们用jmeter做性能测试,必然需要学会分析测试报告.但是初学者常常因为对概念的不清晰,最后被测试报告带到沟里去. 常见的误区 分析响应时间全用平均值 响应时间不和吞吐量挂钩 响应时间和吞吐量 ...

  5. 使用MVVM的常见误区(1)在ViewModel中和用户交互

    缺点,不能进行单元测试 比如,用户在界面点击按钮,实现用户选择一个文件,然后对文件内容进行解析.常见错误如下 using Microsoft.Win32; namespace View和ViewMod ...

  6. canvas实现有递增动画的环形进度条

    哈?标题不知道啥意思? 老规矩,直接看图! 效果如下: 高清大图! 码农多年,老眼昏花,动图看不清?!那就看静态截图!!! 不同分值效果如下:          看完了卖家秀,我们来看产品的制作过程吧 ...

  7. 并发编程-concurrent指南-阻塞队列-数组阻塞队列ArrayBlockingQueue

    ArrayBlockingQueue类是实现了BlockingQueue. ArrayBlockingQueue是一个有界的阻塞队列,其内部实现是将对象放在一个数组中. 放入元素方法: (1) add ...

  8. 机器学习读书笔记(一)k-近邻算法

    一.机器学习是什么 机器学习的英文名称叫Machine Learning,简称ML,该领域主要研究的是如何使计算机能够模拟人类的学习行为从而获得新的知识和技能,并且重新组织已学习到的知识和和技能,使之 ...

  9. Codeforces Gym101097I:Sticks (思维)

    http://codeforces.com/gym/101097/attachments 题意:现在有k种颜色的木棍,每种颜色有ni根木棍,每根木棍有一个长度,问是否有三根木棍可以组成三角形,并且这三 ...

  10. Flutter学习笔记(5)--Dart运算符

    如需转载,请注明出处:Flutter学习笔记(5)--Dart运算符 先给出一个Dart运算符表,接下来在逐个解释和使用.如下:                            描述       ...