P1070 道路游戏

题意:

  有一个环,环上有n个工厂,每个工厂可以生产价格为x的零钱收割机器人,每个机器人在购买后可以沿着环最多走p条边,一秒走一条,每条边不同时间上出现的金币是不同的,问如何安排购买机器人,可以在m的时间内,得到最多的金币。

思路:

  O(n^3)的算法,设DP[i] 为第 i 秒得到的最多金币,sum[ i ][ j ] 表示第 i 秒到 j工厂得到的金币值, cost[ i ]表示从第 i 个工厂买机器人的价格。

  

for(int i=; i<=m; i++){    //秒
for(int k=; k<=min(i, p ); k++){
for(int j=; j<n; j++){ //第i个工厂
dp[i] = max(dp[i], dp[i-k] + sum[i][j] - sum[i-k][(j-k+n) % n] - cost[(j-k+n) % n]);
}
}
}
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/*-----------------------showtime----------------------*/
const int maxn = ; int cost[maxn],dp[maxn], mp[maxn][maxn],sum[maxn][maxn]; int main(){
int n,m,p;
scanf("%d%d%d", &n, &m, &p); for(int i=; i<=n; i++) {
for(int j=; j<=m; j++){
scanf("%d", &mp[(i+) % n][j]);
}
} for(int i=; i<=n; i++) scanf("%d", &cost[i%n]); for(int i=; i<=m; i++){
for(int j=; j<n; j++){
sum[i][j] += sum[i-][(j-+n)%n] + mp[j][i];
}
} memset(dp, ~inf, sizeof(dp));
dp[] = ; for(int i=; i<=m; i++){ //秒
for(int k=; k<=min(i, p ); k++){
for(int j=; j<n; j++){ //第i个工厂
dp[i] = max(dp[i], dp[i-k] + sum[i][j] - sum[i-k][(j-k+n) % n] - cost[(j-k+n) % n]);
}
}
} printf("%d\n", dp[m]);
return ;
}

洛谷 P1070 道路游戏 DP的更多相关文章

  1. 【题解】洛谷P1070 道路游戏(线性DP)

    次元传送门:洛谷P1070 思路 一开始以为要用什么玄学优化 没想到O3就可以过了 我们只需要设f[i]为到时间i时的最多金币 需要倒着推回去 即当前值可以从某个点来 那么状态转移方程为: f[i]= ...

  2. 洛谷 P1070 道路游戏 解题报告

    P1070 道路游戏 题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有\(n\)个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依 ...

  3. 洛谷P1070 道路游戏

    P1070 道路游戏 题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依次将 ...

  4. 洛谷P1070 道路游戏(dp+优先队列优化)

    题目链接:传送门 题目大意: 有N条相连的环形道路.在1-M的时间内每条路上都会出现不同数量的金币(j时刻i工厂出现的金币数量为val[i][j]).每条路的起点处都有一个工厂,总共N个. 可以从任意 ...

  5. 洛谷 P1070 道路游戏(noip 2009 普及组 第四题)

    题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有 nn个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依次将这 nn个机器人工厂编 ...

  6. 洛谷 P1070 道路游戏

    设为第i秒获得的最大值 表示从当前世界是j,从pos走k步到当前点i的最大价值 注意这里的sum可以利用前面的值逐步累加. 我开始做的时候没有想到这一点单独求,然后就超时了. 同时要注意循环的循序问题 ...

  7. [luogu]P1070 道路游戏[DP]

    [luogu]P1070 道路游戏 题目描述小新正在玩一个简单的电脑游戏.游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针 ...

  8. 洛谷 P2197 nim游戏

    洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取 ...

  9. 洛谷 P1965 转圈游戏

    洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...

随机推荐

  1. css清除select默认的样式

    select在firefox与chrome的显示是不一样的,我们一般选择通过css清除掉css的默认样式,然后再增添自定义的样式来解决,css我们一般用这么几行代码来清除默认样式: 1 select ...

  2. Nginx服务器安全加固tips整理

    公司各业务网站大多用到Nginx,花了点时间整理了一下Nginx服务器安全加固的各类tips. 默认配置文件和Nginx端口 /usr/local/nginx/conf/-Nginx配置文件目录,/u ...

  3. 【pycharm】pycharm远程连接服务器的Python解释器,远程编写代码!!!

    今天讲讲如何用pycharm连接远程服务器,使用远程服务器的Python解释器,比如说是你公司的服务器,在家里就可以编写或修改项目的代码! 第一步,先找到服务器上的ip地址 Linux查看IP命令:i ...

  4. 第十章 Centos7-系统进程管理 随堂笔记

    第十章 Centos7-系统进程管理 本节所讲内容: 10.1 进程概述和ps查看进程工具 10.2 uptime查看系统负载-top动态管理进程 10.3 前后台进程切换- nice进程优先级-实战 ...

  5. 如何编写一个WebPack的插件原理及实践

    _ 阅读目录 一:webpack插件的基本原理 二:理解 Compiler对象 和 Compilation 对象 三:插件中常用的API 四:编写插件实战 回到顶部 一:webpack插件的基本原理 ...

  6. Go中的命名规范

    1.命名规范 1.1 Go是一门区分大小写的语言. 命名规则涉及变量.常量.全局函数.结构.接口.方法等的命名. Go语言从语法层面进行了以下限定:任何需要对外暴露的名字必须以大写字母开头,不需要对外 ...

  7. Tomcat源码分析 (三)----- 生命周期机制 Lifecycle

    Tomcat里面有各种各样的组件,每个组件各司其职,组件之间又相互协作共同完成web服务器这样的工程.在这些组件之上,Lifecycle(生命周期机制)至关重要!在学习各个组件之前,我们需要看看Lif ...

  8. android ——活动的生命周期

    在其生命周期内,activity在运行.暂停和停止三种可能的状态间进行转换,不同状态之间互相转换的时候的调用不同的方法,重写这些方法就能在活动切换,被销毁时保存或传输数据,在被启动.被切换出来时接收数 ...

  9. Springmvc的运行原理 SpringMvc的优点

    SpringMVC框架运行原理 1:客户端发送请求到前端控制器(DispatcherServlet),前端控制器根据请求信息(url),查询一个或多个HandlerMapping, 前端控制器,来决定 ...

  10. GitPage部署

    前言 该文章主要为了记录我如何在GitPage上面部署博客网站,这里的话,码云上面也有相同的功能. 若有小伙伴担心GitHub担心把中国的访问也禁了的话(大概不会吧),可以在码云上面部署.流程应该是差 ...