题意

设A(n) = n个1,问有多少对i,j使得\(A(i^j)\equiv0(modp)\)

题解

\(A(n) = \frac{10^n-1}{9}\)

当9与p互质时\(\frac{10^n-1}{9}\%p = (10^n-1)\cdot inv[9] \% p\)

移动项得到\(10^n\equiv1(modp)\)

由欧拉定理当\(gcd(10,p) = 1\)时\(10^{\varphi(p)}\equiv1(modp)\)

那么只要找到最小的d使得\(10^d\equiv1(modp)\)

问题就转化成求有多少对i,j使得\(i^j\equiv0(modp)\)

求d只需要枚举\(\varphi(p)\)的因子就好了

对d分解\(d = p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}\)

固定j,要使\(i^j\)是d的倍数,那么i一定是\(p_1^{\lceil\frac{k_1}{j}\rceil}p_2^{\lceil\frac{k_2}{j}\rceil}\cdots p_n^{\lceil\frac{k_n}{j}\rceil}\)的倍数

设\(g_j = p_1^{\lceil\frac{k_1}{j}\rceil}p_2^{\lceil\frac{k_2}{j}\rceil}\cdots p_n^{\lceil\frac{k_n}{j}\rceil}\),答案就是\(\sum_{j=1}^mg_j\),因为\(k_i\)不会超过30,

当j大于30时的\(g_j\)都一样就不用重复计算了

还有一个问题,当p=3时,因为9与3不互质,inv[9]不存在,式子\(\frac{10^n-1}{9}\%p \Longleftrightarrow (10^n-1)\cdot inv[9] \% p\)

就不成立,需要特判,此时d取3

代码

#include <bits/stdc++.h>

using namespace std;
const int mx = 3e5+10;
typedef long long ll; ll pow_mod(ll a, ll b, ll mod) {
ll ans = 1;
while (b > 0) {
if (b & 1) ans = ans * a % mod;
a = a * a % mod;
b /= 2;
}
return ans;
} ll pow_mod(ll a, ll b) {
ll ans = 1;
while (b > 0) {
if (b & 1) ans = ans * a;
a = a * a;
b /= 2;
}
return ans;
} vector <ll> pp, k; int main() {
int T;
scanf("%d", &T); while (T--) {
ll p, n, m, d;
scanf("%lld%lld%lld", &p, &n, &m);
if (p == 2 || p == 5) {
printf("0\n");
continue;
}
d = p-1;
for (ll i = 1; i*i <= (p-1); i++) {
if ((p-1) % i == 0) {
if (pow_mod(10, i, p) == 1) {
d = min(d, i);
}
if (pow_mod(10, (p-1)/i, p) == 1) {
d = min(d, (p-1)/i);
}
}
}
if (p == 3) d = 3;
pp.clear(); k.clear();
ll ans = 0;
for (ll i = 2; i*i <= d; i++) {
if (d % i == 0) {
int tmp = 0;
while (d % i == 0) {
tmp++;
d /= i;
}
k.push_back(tmp);
pp.push_back(i);
}
}
if (d > 1) pp.push_back(d), k.push_back(1); ll tmp = 1;
for (int i = 1; i <= min(30LL, m); i++) {
tmp = 1;
for (int j = 0; j < pp.size(); j++) {
ll b = k[j] / i;
if (k[j] % i != 0) b++;
tmp *= pow_mod(pp[j], b);
}
ans += n / tmp;
}
if (m > 30) ans += n / tmp * (m-30);
printf("%lld\n", ans);
}
return 0;
}

D-Big Integer_2019牛客暑期多校训练营(第三场)的更多相关文章

  1. 2019牛客暑期多校训练营(第三场)H题目

    题意:给你一个N×N的矩阵,求最大的子矩阵 满足子矩阵中最大值和最小值之差小于等于m. 思路:这题是求满足条件的最大子矩阵,毫无疑问要遍历所有矩阵,并判断矩阵是某满足这个条件,那么我们大致只要解决两个 ...

  2. 2019牛客暑期多校训练营(第三场)- F Planting Trees

    题目链接:https://ac.nowcoder.com/acm/contest/883/F 题意:给定n×n的矩阵,求最大子矩阵使得子矩阵中最大值和最小值的差值<=M. 思路:先看数据大小,注 ...

  3. 2019牛客暑期多校训练营(第三场) F.Planting Trees(单调队列)

    题意:给你一个n*n的高度矩阵 要你找到里面最大的矩阵且最大的高度差不能超过m 思路:我们首先枚举上下右边界,然后我们可以用单调队列维护一个最左的边界 然后计算最大值 时间复杂度为O(n*n*n) # ...

  4. 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)

    题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9:  对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可.     后者mod=1e9,5才 ...

  5. 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...

  6. 2019牛客暑期多校训练营(第一场) B Integration (数学)

    链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...

  7. 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...

  8. 2019牛客暑期多校训练营(第二场)F.Partition problem

    链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...

  9. 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)

    链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...

  10. [状态压缩,折半搜索] 2019牛客暑期多校训练营(第九场)Knapsack Cryptosystem

    链接:https://ac.nowcoder.com/acm/contest/889/D来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

随机推荐

  1. iOS Xcode6 新建OC Category文件

    首先:File -> New File 接下来界面如下,选择Objective-C File,然后Next 在这里选择 Category 即可

  2. poj 1050 To the Max(最大子矩阵之和)

    http://poj.org/problem?id=1050 我们已经知道求最大子段和的dp算法 参考here  也可参考编程之美有关最大子矩阵和部分. 然后将这个扩大到二维就是这道题.顺便说一下,有 ...

  3. 从windows10迁移到Linux Deepin

    如题, 这几天从windows系统迁移到deepin的linux系统花了很多时间, 以致最近都没时间来博客园.现在将这几天的成果分享出来, 顺便也做个记录.先不多说, 上一张新系统界面. 其实在装de ...

  4. c#小灶——使用visual studio编写第一个程序

    虽然,写程序有文本编辑器和编译器就已经足够,但是,我们为了增加工作效率还是要使用IDE. 我们接下来所有的教程都将会在visual studio中实现,visual studio简称vs,是微软开发的 ...

  5. Flink 从0到1学习 —— Flink 中如何管理配置?

    前言 如果你了解 Apache Flink 的话,那么你应该熟悉该如何像 Flink 发送数据或者如何从 Flink 获取数据.但是在某些情况下,我们需要将配置数据发送到 Flink 集群并从中接收一 ...

  6. maven 打包并导出 lib 第三方jar

    一. maven 导出lib 包 执行命令 mvn dependency:copy-dependencies -DoutputDirectory=target/lib 或者在 eclipse 中执行, ...

  7. CentOS 7服务器安装brook和bbr加速

    一.安装Brook 执行一键部署脚本 $ wget -N --no-check-certificate wget -N --no-check-certificate https://raw.githu ...

  8. 控制台基于Quartz.Net组件实现定时任务调度(一)

    前言: 你曾经需要应用执行一个任务吗?比如现在有一个需求,需要每天在零点定时执行一些操作,那应该怎样操作呢? 这个时候,如果你和你的团队是用.NET编程的话,可以考虑使用Quartz.NET调度器.允 ...

  9. 基于RBAC的权限框架

    RBAC权限框架(Role-Based Access Control)基于角色的权限访问控制的框架,通过用户-角色-权限的关联,非常方便的进行权限管理,在这里不再说明什么是RBAC,请自行百度. 谢谢 ...

  10. 洛谷 P1903 [国家集训队]数颜色

    题意简述 给定一个数列,支持两个操作 1.询问l~r有多少不同数字 2.修改某个数字 题解思路 带修莫队 如果修改多了,撤销修改 如果修改少了,进行修改 代码 #include <cmath&g ...