Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.

Example 1:

Input: "babad"
Output: "bab"
Note: "aba" is also a valid answer.

Example 2:

Input: "cbbd"
Output: "bb"

题解:

这个题重新学习了Manacher算法,重新研读第一次学习的代码,真正把这个题的思路想清楚,就可以按照理解很快的把代码实现出来,比我第一次学习这个算法的时候看懂别人的代码然后把别人的模板抄下来,进步了很多。

这个题给我的启发也是,学习任何算法,思考清楚整个过程然后再自己实现它,思考的过程长一点,理解好每个细节是很重要的,只有想明白才能很快把代码写出来!以后要养成没有思考清楚就不着急下手敲题的习惯。

Manacher算法:是一个很典型的空间换时间的算法,给出我初次学习的笔记https://www.cnblogs.com/shanyr/p/5676597.html

  重新梳理以下这个算法:

  算法主要分为三部分:

  A. 扩展原字符串:

    a.为了防止遍历到起始位置的时候会出现越界的情况,在最开始添加字符“$”(我是用手动判度是否到到结尾的,如果不加这个判断我感觉也可以在结尾加一个‘$’)

    b.将每个字符用未出现过的字符隔开,一般用‘#’

       根据前两步,一个字符串会变成下面的形式

    b a b a d

       ->$#b#a#b#a#d#

  B. 变量定义:

    a.定义p[i]表示从第i个位置可以向两边延伸的最长的位置,使得以i为中心,左右各扩展p[i]长度的子串满足回文

     例如对串$#b#a#b#a#d#的p数组为

            $ #  b # a  # b  # a # d #

    p  ->  0  0 1  0 3  0 3  0 1 0  1 0

     然后可以发现p中的最大值就是最长回文子串的长度,很容易证明。但是这个题要求输出的是子串,只要从最大值为中心,前后p[]的位置搜索,把不是'#'输出就可以。

  C. 求p[i]:由于我们是O(n)的算法,所以在计算第i个位置的时候,前面的i-1个位置的p值已经算出来了。

    我们可以利用之前求的对称性:定义mx为当前扫描的最远的位置,id为mx对应的中心点,可以将p[i]分成两种情况求解:

    a. 情况1,如下图所示,mx-i >p[j],那么p[i]一定等于p[j]。(因为id左右mx是对称的)

    b.情况2,如下图所示,mx-i <= p[j],那么mx-i的长度的部分一定是对称的,但是超出的部分就要挨个判断了,判断结束后要更新mx = i+p[i], id = i。(因为id左右mx是对称的)

 

给出代码:

 class Solution {
public:
string longestPalindrome(string s) {
//扩展
string expend_s;
expend_s+='$';
int len = s.length();
for(int i = ; i < len; i++){
expend_s+='#';
expend_s+=s[i];
}
expend_s+='#';
//定义
int p[*expend_s.length()];
memset(p,,sizeof(p));
int mx = , id = ;
int max = , maxid = ;//保存最大回味子串搜索长度和位置
//求p
for(int i = ; i < expend_s.length(); i++){
int j = *id - i;
if(p[j]<mx-i){
p[i] = p[j];
}
else{
for(;expend_s[i+p[i]]==expend_s[i-p[i]]; p[i]++){
if(i+p[i]>=expend_s.length())break;//要判断右侧是否越界
}
mx = i+p[i];
id = i;
}
if(max < p[i]){
max = p[i];
maxid = i;
}
}
string ans;
for(int i = maxid-max+; i <= maxid+max-; i++){
if(expend_s[i]!='#'){
ans+=expend_s[i];
}
}
return ans;
}
};

  


Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)的更多相关文章

  1. 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  2. [LeetCode] 5. Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  3. [leetcode]5. Longest Palindromic Substring最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  4. 【LeetCode】5. Longest Palindromic Substring 最长回文子串

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...

  5. LeetCode:Longest Palindromic Substring 最长回文子串

    题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  6. lintcode :Longest Palindromic Substring 最长回文子串

    题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...

  7. 1. Longest Palindromic Substring ( 最长回文子串 )

    要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...

  8. 【翻译】Longest Palindromic Substring 最长回文子串

    原文地址: http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html 转载请注明出处:http:// ...

  9. 005 Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

随机推荐

  1. SSM 框架集成

    1.SSM是什么? SSM是指目前最主流的项目架构的三大框架: SpringMVC : spring的 Web层框架,是spring的一个模块 Spring :容器框架 MyBatis :持久层框架 ...

  2. Git常用命令--了解这些就够了

    <div class="show-content-free"> <blockquote> Csdn 将本地工程push到远程 方式一: 建立本地仓库 git ...

  3. 使用 Spring Framework 时常犯的十大错误

    Spring 可以说是最流行的 Java 框架之一,也是一只需要驯服的强大野兽.虽然它的基本概念相当容易掌握,但成为一名强大的 Spring 开发者仍需要很多时间和努力. 在本文中,我们将介绍 Spr ...

  4. nginx目录穿越漏洞复现

    nginx目录穿越漏洞复现 一.漏洞描述 Nginx在配置别名(Alias)的时候,如果忘记加/,将造成一个目录穿越漏洞. 二.漏洞原理 1. 修改nginx.conf,在如下图位置添加如下配置 在如 ...

  5. 如何使用JSP访问MySQL数据库

    <%@page import="java.sql.*" import ="java.util.*" import ="java.io.*&quo ...

  6. spring解析配置文件(三)

    一.从XmlBeanDefinitionReader的registerBeanDefinitions(doc,resource)开始 protected int doLoadBeanDefinitio ...

  7. Thinkphp 3.2.3 parseWhere设计缺陷导致update/delete注入 分析

    目录 分析 总结 分析 首先看一下控制器,功能是根据用户传来的id,修改对应用户的密码. 13行把用户传来的id参数送入where()作为SQL语句中的WHERE语句,将pwd参数送入save()作为 ...

  8. StringBuffer类的delete()方法和deleteCharAt()方法的区别

    引言 StringBuffer类的delete()方法和deleteCharAt()方法都是用来删除StringBuffer字符串中的字符 区别 1.对于delete(int start,int en ...

  9. UE4 代理 BindRaw和BindUObject

    代理允许您在C++对象上以通用的但类型安全的方式调用成员函数.通过使用代理,可以将其动态地绑定到任何对象的成员函数上,然后在该对象上调用函数,即时调用者不知道该对象的类型也没关系. 任何时候都应该通过 ...

  10. 对数变换(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 变换形式如下 $$T(r) = c\lg(r+1)$$ c为常数 由于对数函数的导数随自变量的增大而减小,对数变换将输入窄范围的低灰度值扩展为范围宽的灰度值和宽范围的高灰度值压缩为映射 ...