Minimum Value Rectangle
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You have nn sticks of the given lengths.

Your task is to choose exactly four of them in such a way that they can form a rectangle. No sticks can be cut to pieces, each side of the rectangle must be formed by a single stick. No stick can be chosen multiple times. It is guaranteed that it is always possible to choose such sticks.

Let SS be the area of the rectangle and PP be the perimeter of the rectangle.

The chosen rectangle should have the value P2SP2S minimal possible. The value is taken without any rounding.

If there are multiple answers, print any of them.

Each testcase contains several lists of sticks, for each of them you are required to solve the problem separately.

Input

The first line contains a single integer TT (T≥1T≥1) — the number of lists of sticks in the testcase.

Then 2T2T lines follow — lines (2i−1)(2i−1) and 2i2i of them describe the ii-th list. The first line of the pair contains a single integer nn (4≤n≤1064≤n≤106) — the number of sticks in the ii-th list. The second line of the pair contains nn integers a1,a2,…,ana1,a2,…,an (1≤aj≤1041≤aj≤104) — lengths of the sticks in the ii-th list.

It is guaranteed that for each list there exists a way to choose four sticks so that they form a rectangle.

The total number of sticks in all TT lists doesn't exceed 106106 in each testcase.

Output

Print TT lines. The ii-th line should contain the answer to the ii-th list of the input. That is the lengths of the four sticks you choose from theii-th list, so that they form a rectangle and the value P2SP2S of this rectangle is minimal possible. You can print these four lengths in arbitrary order.

If there are multiple answers, print any of them.

Example
input

Copy
3
4
7 2 2 7
8
2 8 1 4 8 2 1 5
5
5 5 5 5 5
output

Copy
2 7 7 2
2 2 1 1
5 5 5 5
Note

There is only one way to choose four sticks in the first list, they form a rectangle with sides 22 and 77, its area is 2⋅7=142⋅7=14, perimeter is 2(2+7)=182(2+7)=18. 18214≈23.14318214≈23.143.

The second list contains subsets of four sticks that can form rectangles with sides (1,2)(1,2), (2,8)(2,8) and (1,8)(1,8). Their values are 622=18622=18, 20216=2520216=25 and 1828=40.51828=40.5, respectively. The minimal one of them is the rectangle (1,2)(1,2).

You can choose any four of the 55 given sticks from the third list, they will form a square with side 55, which is still a rectangle with sides (5,5)(5,5).

题意:给你n根木棒,从中挑出四根木棒组成一个矩形,矩形面积为S,周长为P,求使P^2/S最小的四根木棒长度

分析:假设矩形宽为a,长为b,则P^2/S=(2*(a+b))^2/a*b=4*(a*a+2*a*b+b*b)/a*b=4*(2+a/b+b/a)

  即求a/b+b/a的最小值

  a/b+b/a>=2*sqrt(a/b*b/a)=2(当且仅当a/b=b/a时等式成立)

  即当a=b时取最小,a!=b时,a,b越接近值越小

  所以我们先求出所有可以用来做矩形的边,将这些边排序后再枚举求相邻两边a/b+b/a的最小值

AC代码:

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = 1e6+10;
const ll mod = 998244353;
const double pi = acos(-1.0);
const double eps = 1e-8;
ll n, T, cnt, a[maxn], b[maxn];
int main() {
ios::sync_with_stdio(0);
cin >> T;
while( T -- ) {
cnt = 0;
cin >> n;
for( ll i = 1; i <= n; i ++ ) {
cin >> a[i];
}
sort(a+1,a+n+1);
bool flag = false;
for( ll i = 1; i <= n; i ++ ) {
if(!flag) {
flag = true;
} else {
if( a[i] == a[i-1] ) {
b[++cnt] = a[i];
flag = false;
}
}
}
double ans = 1e9;
ll x, y;
for( ll i = 1; i < cnt; i ++ ) {
if( ans>(b[i+1]*1.0)/b[i]+(b[i]*1.0)/b[i+1]) {
ans = (b[i+1]*1.0)/b[i]+(b[i]*1.0)/b[i+1];
x = b[i], y = b[i+1];
}
}
cout << x << " " << x << " " << y << " " << y << endl;
}
return 0;
}

  

CF1027C Minimum Value Rectangle 贪心 数学的更多相关文章

  1. CF1027C Minimum Value Rectangle【贪心/公式化简】

    https://www.luogu.org/problemnew/show/CF1027C #include<cstdio> #include<string> #include ...

  2. CF1027C Minimum Value Rectangle

    之前做的时候没想出来...现在来数学推导一波. 题意:从n个木棒中选出4个拼成一个矩形,使得 (周长)2/面积 最小. 解:设矩形宽a长b.我们要最小化下面这个式子: 去掉常数,不妨设b = a + ...

  3. [Swift]LeetCode963. 最小面积矩形 II | Minimum Area Rectangle II

    Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...

  4. 贪心/数学 Codeforces Round #212 (Div. 2) A. Two Semiknights Meet

    题目传送门 /* 贪心/数学:还以为是BFS,其实x1 + 4 * k = x2, y1 + 4 * l = y2 */ #include <cstdio> #include <al ...

  5. LC 963. Minimum Area Rectangle II

    Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...

  6. 【leetcode】963. Minimum Area Rectangle II

    题目如下: Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from ...

  7. 963. Minimum Area Rectangle II

    Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...

  8. 【LeetCode】963. Minimum Area Rectangle II 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 线段长+线段中心+字典 日期 题目地址:https: ...

  9. 【CF1027C】Minimum Value Rectangle(贪心,数学)

    题意:给定n根木棍,不允许拼接或折断,选择四根组成矩形,求所有合法矩形中周长平方与面积比最小的一个,输出拼成这个矩形的四根木棍 n<=1e6 思路:猜结论:答案必定从相邻的4根中产生 证明见ht ...

随机推荐

  1. NDK jni mk文件 so文件 巴啦啦 初体验

    概念JNI(Java Native Interface,Java本地接口),实现了Java和其他语言的交互(主要是C/C++),如:Java程序通过JNI调用C/C++编写的在Windows上运行的D ...

  2. .net持续集成测试篇之Nunit文件断言、字符串断言及集合断言

    使用前面讲过的方法基本上能够完成工作中的大部分任务了,然而有些功能实现起来还是比较麻烦的,比如说字符串相等性比较不区分大小写,字符串是否匹配某一正则规则,集合中的每一个(某一个)元素是否符合特定规则等 ...

  3. 记录一下我做Udacity 的Data Scientist Nano Degree Project

    做项目的时候看了别人的blog,决定自己也随手记录下在做项目中遇到的好的小知识点. 最近在做Udacity的Data Scientist Nano Degree Project的Customer_Se ...

  4. Selenium+java - 借助autolt完成上传文件操作

    写在前面: 上传文件是每个自动化测试同学会遇到,而且可以说是面试必考的问题,标准控件我们一般用sendkeys()就能完成上传,但是我们的测试网站的上传控件一般为自己封装的,用传统的上传已经不好用了, ...

  5. 【Java例题】2.5 温度转换

    5.输入华氏温度, 用下列公式将其转换为摄氏温度并输出. C=5/9(F-32). package study; import java.util.Scanner; public class demo ...

  6. JVM系列(1)- JVM常见参数及堆内存分配

    常见参数配置 基于JDK1.6 -XX:+PrintGC 每次触发GC的时候打印相关日志 -XX:+UseSerialGC 串行回收模式 -XX:+PrintGCDetails 打印更详细的GC日志 ...

  7. HTML5 Device Access (设备访问)

    camera api (含图片预览) 参考地址 主要为利用input type=file, accept="image/*" 进行处理 图片预览方式(两种) const file ...

  8. 机器学习中的误差 Where does error come from?

    误差来自于偏差和方差(bias and variance)   对于随机变量 X,假设其期望和方差分别为 μ 和 σ2.随机采样 N 个随机变量构成样本,计算算术平均值 m,并不会直接得到 μ (除非 ...

  9. Redis的分布式和主备配置调研

    目前Redis实现集群的方法主要是采用一致性哈稀分片(Shard),将不同的key分配到不同的redis server上,达到横向扩展的目的. 对于一致性哈稀分片的算法,Jedis-2.0.0已经提供 ...

  10. JavaWeb——Servlet开发1

    Java Servlet是运行在服务器端上的程序,Servlet是Java Servlet包中的一个接口,能够直接处理和相应客户端的请求,也可以将工作委托给应用的其他类. public interfa ...