C. p-binary

Vasya will fancy any number as long as it is an integer power of two. Petya, on the other hand, is very conservative and only likes a single integer p (which may be positive, negative, or zero). To combine their tastes, they invented p-binary numbers of the form 2x+p, where x is a non-negative integer.

For example, some −9-binary ("minus nine" binary) numbers are: −8 (minus eight), 7 and 1015 (−8=20−9, 7=24−9, 1015=210−9).

The boys now use p-binary numbers to represent everything. They now face a problem: given a positive integer n, what's the smallest number of p-binary numbers (not necessarily distinct) they need to represent n as their sum? It may be possible that representation is impossible altogether. Help them solve this problem.

For example, if p=0 we can represent 7 as 20+21+22.

And if p=−9 we can represent 7 as one number (24−9).

Note that negative p-binary numbers are allowed to be in the sum (see the Notes section for an example).

Input

The only line contains two integers n and p (1≤n≤109, −1000≤p≤1000).

Output

If it is impossible to represent n as the sum of any number of p-binary numbers, print a single integer −1. Otherwise, print the smallest possible number of summands.

Examples

input

24 0

output

2

Note

0-binary numbers are just regular binary powers, thus in the first sample case we can represent 24=(24+0)+(23+0).

In the second sample case, we can represent 24=(24+1)+(22+1)+(20+1).

In the third sample case, we can represent 24=(24−1)+(22−1)+(22−1)+(22−1). Note that repeated summands are allowed.

In the fourth sample case, we can represent 4=(24−7)+(21−7). Note that the second summand is negative, which is allowed.

In the fifth sample case, no representation is possible.

题意

定义p-binary为2^x+p

现在给你一个数x,和一个p。

问你最少用多少个p-binary能构造出x,如果没有输出-1

题解

转化为:

x = 2^x1 + 2^x2 + ... + 2^xn + n*p

首先我们知道任何数都能用二进制表示,如果p=0的话,肯定是有解的。那么答案最少都是x的2进制1的个数。

另外什么情况无解呢,即x-n*p<0的时候肯定无解,可以更加有优化为x-n*p<n的时候无解。

答案实际上就是n,我们从小到大枚举n,然后check现在的2进制中1的个数是否小于等于n。

代码

#include<bits/stdc++.h>
using namespace std; int Count(int x){
int number=0;
for(;x;x-=x&-x){
number++;
}
return number;
}
int main(){
int n,p,ans=0;
scanf("%d%d",&n,&p);
while(1){
n-=p;
ans++;
int cnt=Count(n);
if(ans>n){
cout<<"-1"<<endl;
return 0;
}
if(cnt<=ans){
cout<<ans<<endl;
return 0;
}
}
}

Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary 水题的更多相关文章

  1. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)

    A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...

  2. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products

    链接: https://codeforces.com/contest/1247/problem/D 题意: You are given n positive integers a1,-,an, and ...

  3. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary

    链接: https://codeforces.com/contest/1247/problem/C 题意: Vasya will fancy any number as long as it is a ...

  4. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)

    链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...

  5. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things

    链接: https://codeforces.com/contest/1247/problem/A 题意: Kolya is very absent-minded. Today his math te ...

  6. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题

    F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...

  7. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp

    E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...

  8. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法

    B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...

  9. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things 水题

    A. Forgetting Things Kolya is very absent-minded. Today his math teacher asked him to solve a simple ...

  10. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力

    D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...

随机推荐

  1. 如何在python中使用Elasticsearch

    什么是 Elasticsearch ​ 想查数据就免不了搜索,搜索就离不开搜索引擎,百度.谷歌都是一个非常庞大复杂的搜索引擎,他们几乎索引了互联网上开放的所有网页和数据.然而对于我们自己的业务数据来说 ...

  2. 第04组 Alpha冲刺(1/4)

    队名:斗地组 组长博客:地址 作业博客:Alpha冲刺(1/4) 各组员情况 林涛(组长) 过去两天完成了哪些任务: 1.安排好各个组员的任务 2.收集各个组员的进度 3.写页面 4.写博客 展示Gi ...

  3. typescript里一些有趣的点

    联合类型 在原生的JS里,null和undefined经常会导致BUG的产生, 在ts里,你又想用null,又担心出错的时候 你可以考虑用联合类型,当某值可能为 number或null,你可以声明它的 ...

  4. Golang面向并发的内存模型

    Import Advanced Go Programming 1.5 面向并发的内存模型 在早期,CPU都是以单核的形式顺序执行机器指令.Go语言的祖先C语言正是这种顺序编程语言的代表.顺序编程语言中 ...

  5. 《细说PHP》第四版 样章 第23章 自定义PHP接口规范 7

    23.5  创建RESTful规范 WebAPI框架 虽然我们现在可以自己实现API了,也了解了RESTful API的设计原则,但让自己实现的API符合RESTful API规范,对很多刚接触API ...

  6. 【linux命令】权限管理命令(chattr、lsattr、sudo)

    目录 chattr lsattr sudo 一.chattr命令 chattr命令用来修改文件系统的权限属性,只有 root 用户可以使用,建立凌驾于 rwx 基础权限之上的授权. PS:chattr ...

  7. spring的事件机制实战

    理论 在分布式场景下,实现同步转异步的方式有三种方式: 1.异步线程池执行:比如借助@Asyn注解,放到spring自带的线程池中去执行: 2.放到消息队列中,在消费者的代码中异步的消费,执行相关的逻 ...

  8. Python 如何操作微信

    1.给文件传输助手发一条消息 import itchat itchat.auto_login(enableCmdQR=True) # 这里需要你人工手机扫码登录 itchat.send('Hello, ...

  9. (四)初识NumPy(函数和图像的数组表示)

    本章节主要介绍NumPy中的三个主要的函数,分别是随机函数.统计函数和梯度函数,以及一个较经典的用数组来表示图像的栗子!,希望大家能有新的收货,共同进步! 一.np.random的随机函数(1) ra ...

  10. 【CodeChef】Find a special connected block - CONNECT(斯坦纳树)

    [CodeChef]Find a special connected block - CONNECT(斯坦纳树) 题面 Vjudge 题解 还是一样的套路题,把每个数字映射到\([0,K)\)的整数, ...