[LOJ 6433][PKUSC 2018]最大前缀和
[LOJ 6433][PKUSC 2018]最大前缀和
题意
给定一个长度为 \(n\) 的序列, 求把这个序列随机打乱后的最大前缀和的期望乘以 \(n!\) 后对 \(998244353\) 取膜后的值.
前缀和不能为空.
\(n\le 20\).
题解
首先这个期望显然是逗你玩的...只是计数而已
然后我们把一个序列拆成两部分, 一部分前缀和都不大于总和, 一部分前缀和都不大于 \(0\). 那么显然这样的一个序列的最大前缀和就是第一部分的和. 我们只要知道有多少个这样的序列就好了.
后面的做法感觉有点意思
我们用两个DP分别求解序列的某个子集组成两个部分的方案数量. 如果当前集合的和大于 \(0\) 那么显然不能用来组成第二部分, 但是我们可以在这个集合产生的合法第一部分的前面加一个值来组成新的第一部分. 而如果当前集合的和不大于 \(0\), 那么它只能用于构成第二部分, 而且我们可以断定如果在这个集合中钦定某个值放在最后, 那么只要剩下的值能构成合法的第二部分, 新的序列也能构成合法的第二部分.
最后枚举那些值在第一部分, 剩下值丢给第二部分, 卷起来就可以了.
参考代码
#include <bits/stdc++.h>
const int MAXN=21;
const int MOD=998244353;
const int MAXL=(1<<20)|3;
int n;
int a[MAXN];
int dp1[MAXL];
int dp2[MAXL];
int sum[MAXL];
inline int LowBit(int);
int main(){
scanf("%d",&n);
dp2[0]=1;
for(int i=0;i<n;i++){
scanf("%d",a+i);
dp1[1<<i]=1;
sum[1<<i]=a[i];
}
for(int s=1;s<(1<<n);s++){
if(s!=LowBit(s))
sum[s]=sum[s^LowBit(s)]+sum[LowBit(s)];
if(sum[s]>0){
for(int i=0;i<n;i++)
if((s&(1<<i))==0)
(dp1[s^(1<<i)]+=dp1[s])%=MOD;
}
else{
for(int i=0;i<n;i++)
if((s&(1<<i))!=0)
(dp2[s]+=dp2[s^(1<<i)])%=MOD;
}
}
int ans=0;
for(int s=1;s<(1<<n);s++)
(ans+=1ll*sum[s]*dp1[s]%MOD*dp2[((1<<n)-1)^s]%MOD)%=MOD;
printf("%d\n",ans<0?ans+MOD:ans);
return 0;
}
inline int LowBit(int x){
return x&-x;
}
[LOJ 6433][PKUSC 2018]最大前缀和的更多相关文章
- [LOJ 6435][PKUSC 2018]星际穿越
[LOJ 6435][PKUSC 2018]星际穿越 题意 给定 \(n\) 个点, 每个点与 \([l_i,i-1]\) 之间的点建立有单位距离的双向边. \(q\) 组询问从 \(x\) 走到 \ ...
- [LOJ 6432][PKUSC 2018]真实排名
[LOJ 6432][PKUSC 2018]真实排名 题意 给定 \(n\) 个选手的成绩, 选中其中 \(k\) 个使他们的成绩翻倍. 对于每个选手回答有多少种方案使得他的排名不发生变化. \(n\ ...
- PKUSC 2018 题解
PKUSC 2018 题解 Day 1 T1 真实排名 Link Solution 考虑对于每一个人单独算 每一个人有两种情况,翻倍和不翻倍,他的名次不变等价于大于等于他的人数不变 设当前考虑的人的成 ...
- LOJ 6433 「PKUSC2018」最大前缀和——状压DP
题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...
- Loj#6433「PKUSC2018」最大前缀和(状态压缩DP)
题面 Loj 题解 先转化题意,其实这题在乘了\(n!\)以后就变成了全排列中的最大前缀和的和(有点拗口).\(n\leq20\),考虑状压\(DP\) 考虑一个最大前缀和\(\sum\limits_ ...
- Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)
题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...
- LOJ#6433. 「PKUSC2018」最大前缀和 状压dp
原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...
- 「PKUSC2018」最大前缀和 LOJ#6433&BZOJ5369
分析: 这个题非常的棒,目测如果去了能AC... 我们考虑一个序列是如何构成的——一个后缀>0的序列,和一个前缀<0的序列 问题可以简化为求出当前缀和为状态S的所有数的和的时候,S满足后缀 ...
- loj 6433 「PKUSC2018」最大前缀和 题解【DP】【枚举】【二进制】【排列组合】
这是个什么集合DP啊- 想过枚举断点但是不会处理接下来的问题了- 我好菜啊 题目描述 小 C 是一个算法竞赛爱好者,有一天小 C 遇到了一个非常难的问题:求一个序列的最大子段和. 但是小 C 并不会做 ...
随机推荐
- Saiku ui-settings接口404错误避免(二十九)
Saiku ui-settings接口404错误避免 自己手动编译的saiku ,不知道为什么前端总是报错 /saiku/rest/saiku/info/ui-settings 404NotFo ...
- json数据格式与字典数据类型之间的相互转换
import json class HandleJson: ''' 定义一个json格式数据处理类 ''' @staticmethod def loads_data(data): ''' 将json数 ...
- mysql多表关联update
日常的开发中一般都是写的单表update语句,很少写多表关联的update. 不同于SQL Server,在MySQL中,update的多表连接更新和select的多表连接查询在使用的方法上存在一些小 ...
- MySQL for OPS 12:锁处理
写在前面的话 在前面的内容中提到过,在以前的 MyISAM 中锁是表级锁,InnoDB 是行级锁.这个锁到底是啥样,怎么找出来,这一节就主要做这个. 定位锁的问题 上一节我们创建了一个 1000万数据 ...
- GO 基本语法——变量
基本语法--变量 一.变量的使用 1.1 什么是变量 变量是为存储特定类型的值而提供给内存位置的名称.在go中声明变量有多种语法. 所以变量的本质就是一小块内存,用于存储数据,在程序运行过程中数值可以 ...
- LazyCoder修仙之路
本人不才,没有高文凭,茹果本人的修仙[开发]之路能 ,走的很远,后来的人能看的上我 作品,有不足,和不对,帮帮我完善和理解.这也是我 学习笔记把!
- 在RPA中使用Python批量生成指定尺寸的缩略图!比Ps好用!
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取 htt ...
- python-execjs(调用js)
一.安装 pip3 install PyExecJS 电脑上要有nodejs环境 二.使用 一.获取js字符串 首先将js保存至于本地文件或者你可以可以直接读到内存,必须让js以字符串的形式展示 注意 ...
- 读取树莓派4B处理器(CPU)的实时温度
读取树莓派4B处理器(CPU)的实时温度 树莓派发布4B后,性能提升了不少,但是温度也是高的不行,所以最好配置一个小风扇和散热片还是比较好的 俩种办法都可以实现 1.Shell命令读取 打开终端 cd ...
- gzip格式分析与识别
" 介绍gzip格式,识别gzip压缩的数据流量." 在协议分析过程中,经常会发现gzip压缩的数据,例如在HTTP协议中,在HTTP头中会标示,内容编码为gzip.DEFLATE ...