QBXT模拟赛1

总结

期望得分:\(100 + 80 + 10 = 190\)

实际得分:\(90 + 80 + 10 = 180\)

这是在清北的第一场考试,也是在清北考的最高的一次了吧。。本来以为能拿\(190\)的,没想到强者太多,\(AK\)的一群,\(200\)分大众分。。我好菜

思路&&代码

T1

\(T1\)是个简单题,却因为\(1-1=0\)这个点忘记去除前导零而失去了\(10\)分,以后要多对拍,多注意细节

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int N = 1e5 + 11; inline int read() {
char c = getchar();
int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48);
return x * f;
} char s[N];
string a;
int len, now, whe, pos; int main() {
scanf("%s", s + 1);
len = strlen(s + 1), now = s[1] - '0', whe = 1, pos = 1;
for(int i = 2, x; i <= len; i++) {
x = s[i] - '0';
if(x > now) {
now = x;
whe = i;
pos = i;
}
else if(x == now) pos = i;
if(x < now) break;
}
if(whe == len || pos == len) return cout << (s + 1) << '\n', 0;
for(int i = 1; i < whe; i++) a += s[i];
if(s[whe] - 1 != '0') a += s[whe] - 1;
for(int i = whe + 1; i <= len; i++) a += '9';
cout << a;
return 0;
}

T2

看式子不懂,之后手算一下发现就是个逆序对,进而发现可以转化为求哪些区间包含这对逆序对,然后这对逆序对的值乘以区间个数,式子如下

\[\sum_j a_j * (n - j + 1) *\sum_{a_i > a_j, i < j} a_i * i
\]

后面的可以用数据结构维护,发现模数是\(1e12+7\),两个\(10^12\)的数相乘会爆\(long\ long\),所以要用快速乘

然后就做完了

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) (x & -x)
#define int long long
using namespace std; const int N = 5e5 + 11;
const int mod = 1e12 + 7; inline int read() {
char c = getchar();
int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48);
return x * f;
} int n;
int a[N], ans = 0;
int b[N], p[N], f[N]; inline int mul(int a, int b, int res = 0) {
while(b) {
if(b & 1) ans = (ans + a) % mod;
a = a + a % mod; b >>= 1;
}
return res;
} inline int query(int x) {
int ans = 0;
for(int i = x; i; i -= lowbit(i)) ans = (ans + p[i]) % mod;
return ans;
} const int MAX = 1e5; inline void add(int x, int val) {
for(int i = x; i <= MAX; i += lowbit(i)) p[i] = (p[i] + val) % mod;
return;
} signed main() {
n = read();
for(int i = 1; i <= n; i++) b[i] = a[i] = read();
sort(b + 1, b + 1 + n);
for(int i = 1; i <= n; i++) f[i] = lower_bound(b + 1, b + 1 + n, a[i]) - b;
for(int i = 1; i <= n; i++) {
int now = query(n) - query(f[i]);
now = (now % mod + mod) % mod;
ans = ans + mul(now * (n - i + 1), a[i]);
ans = (ans % mod + mod) % mod;
add(f[i], a[i] * i);
}
ans = (ans % mod + mod) % mod;
cout << ans << '\n';
return 0;
}

T3

直接用线段树扫描线就\(over\)了

还有一种神奇做法。。

#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define max(a, b) (a > b ? a : b)
#define min(a, b) (a < b ? a : b)
#define PII pair<int, int>
#define mk(x, y) make_pair(x, y)
using namespace std; const int N = 5e4 + 11;
const int M = 1e6 + 11;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f; inline int read() {
char c = getchar();
int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48);
return x * f;
} int n, m, a[N], b[N], c[N], d[N];
int mina, minb, maxc, maxd; map<pair<int, int>, int> mp; int main() {
int T = read();
while(T--) {
n = read();
mina = minb = INF;
maxc = maxd = -INF;
mp.clear();
for(int i = 1; i <= n; i++) {
a[i] = read(), b[i] = read(), c[i] = read(), d[i] = read();
mina = min(mina, a[i]);
minb = min(minb, b[i]);
maxc = max(maxc, c[i]);
maxd = max(maxd, d[i]);
mp[mk(a[i], b[i])]++;
mp[mk(a[i], d[i])]++;
mp[mk(c[i], b[i])]++;
mp[mk(c[i], d[i])]++;
}
int cnt = 0;
if(mp[mk(mina, minb)] == 1) cnt++;
if(mp[mk(mina, maxd)] == 1) cnt++;
if(mp[mk(maxc, minb)] == 1) cnt++;
if(mp[mk(maxc, maxd)] == 1) cnt++;
if(cnt != 4) {
puts("Guguwansui");
continue;
}
cnt = 0;
for(int i = 1; i <= n; i++) {
if(mp[mk(a[i], b[i])] == 1) cnt++;
if(mp[mk(a[i], d[i])] == 1) cnt++;
if(mp[mk(c[i], b[i])] == 1) cnt++;
if(mp[mk(c[i], d[i])] == 1) cnt++;
}
if(cnt == 4) puts("Perfect");
else puts("Guguwansui");
}
return 0;
}
//这题太神了我不会。

QBXT模拟赛1的更多相关文章

  1. QBXT模拟赛2

    总结 期望得分:\(100 + 40 + 0 = 140\) 实际得分:\(0 + 0 + 0 = 0\) 鬼知道为什么我代码没有交上..自测\(10 + 50 + 0\)--这是心态爆炸的一场考试 ...

  2. 4.28 QBXT模拟赛

    NOIP2016提高组模拟赛 ——By wangyurzee7 中文题目名称 迷妹 膜拜 换数游戏 英文题目与子目录名 fans mod game 可执行文件名 fans mod game 输入文件名 ...

  3. 2017.10.3 QBXT 模拟赛

    题目链接 T1 模拟 #include <cstring> #include <cstdio> #define N 105000 int L,R; char s[N]; int ...

  4. 2017.10.7 QBXT 模拟赛

    题目链接 T1 容斥原理,根据奇偶性进行加减 #include<iostream> #include<cstdio> using namespace std; typedef ...

  5. 2017.10.6 QBXT 模拟赛

    题目链接 T1 Sort 一下与原数组比较 ,若有两个数或者没有数发生位置交换 ,则输出YES ,否则输出NO #include <algorithm> #include <ccty ...

  6. 2017.10.5 QBXT 模拟赛

    题目链接 T1 从小到大排序,用sum记录前缀和,然后枚举1~n个数 ,如果当前的前缀和 + 1小于a[i]的话 那么 sum + 1永远不可能拼出来 直接输出sum + 1 ,否则统计前缀和.最后如 ...

  7. 2017.10.4 QBXT 模拟赛

    题目链接 T1 维护一个单调栈 #include <iostream> #include <cstdio> #define N 500000 #define rep(a,b,c ...

  8. 2017.10.2 QBXT 模拟赛

    题目链接 T1 我们所要求得是(a*b)|x 也就是 使(a*b)的倍数小于x的个数之和 1<=x<=n 我们可以 找一个c使得 (a*b*c)<=x 由于我们所求的是一个三元有序对 ...

  9. 2017.10.1 QBXT 模拟赛

    题目链接 T1 枚举右端点,前缀和优化.对于当前点x,答案为 sum[x][r]-sum[x][l-1]-(sum[z][r]-sum[z][l-1]) 整理为 sum[x][r]-sum[z][r] ...

随机推荐

  1. 解决:Unable to acquire the dpkg frontend lock (/var/lib/dpkg/lock-frontend), is another process using it?

    简单粗暴法 删除锁 $ sudo rm /var/cache/apt/archives/lock $ sudo rm /var/lib/dpkg/lock 如果还不行,重启虚拟机 $ reboot

  2. 使用canal增量同步mysql数据库信息到ElasticSearch

    本文介绍如何使用canal增量同步mysql数据库信息到ElasticSearch.(注意:是增量!!!) 1.简介 1.1 canal介绍 Canal是一个基于MySQL二进制日志的高性能数据同步系 ...

  3. JS 从内存空间谈到垃圾回收机制

     壹 ❀ 引 从事计算机相关技术工作的同学,对于内存空间相关概念多少有所耳闻,毕竟像我这种非计算机科班出身的人,对于栈堆,垃圾回收都能简单说道几句:当我明白JS 基本类型与引用类型数据存储方式不同,才 ...

  4. SQL Server字符串函数STUFF的使用

    前言: 最近有个实践练习是将学生报名数据表student中的[st_id]字段的第二个和第三个字符删除,然后在此位置插入新的字符串“200900”,其实就是替换的意思,生成新的字符串. STUFF 函 ...

  5. IT兄弟连 Java语法教程 数据类型2

    整型 Java定义了4种整数类型:byte.short.int和long.所有这些类型都是有符号的.正或负的整数.Java不支持无符号的.只是正值的整数.许多其它计算机语言同时支持有符号和无符号整数. ...

  6. 15-Django开发REST接口

    使用Django开发REST接口 我们以在Django框架中使用的图书以及书中人物案例来写一套支持图书数据增删改查的REST API接口,来理解REST API的开发(前后端均发送JSON格式数据) ...

  7. Docker - 创建镜像(二)

    实际工作中,我们可能需要自己去创建一个docker镜像,下面给大家介绍如何创建docker镜像 1. 创建一个最简单的镜像 准备Dockerfile文件 [root@dockhost ~]# mkdi ...

  8. git基本操作:分支管理

    一.创建测试项目 1.新建GitHub仓库 在GitHub上面新创建一个仓库,用来演示分支管理,如下图所示: 点击“Create repository”按钮创建新仓库. 2.将本地仓库项目上传到Git ...

  9. Entity Framework 基础操作(1)

    EF是微软推出的官方ORM框架,默认防注入可以配合LINQ一起使用,更方便开发人员. 首先通过SQLSERVER现在有的数据库类生产EF 右键->添加->新建项,选择AOD.NET实体数据 ...

  10. java基础(16):正则表达式、Date、DateFormat、Calendar

    1. 正则表达式 1.1 正则表达式的概念 正则表达式(英语:Regular Expression,在代码中常简写为regex). 正则表达式是一个字符串,使用单个字符串来描述.用来定义匹配规则,匹配 ...