#排列组合,dp#LOJ 6069 「2017 山东一轮集训 Day4」塔
分析
两点之间的最小距离其实是由两点高度最大值决定的,
求出长度为 \(n\) 的排列所需距离的方案数,剩下还能放的距离可以用插板法放进去。
也就是 \(\sum_{i=1}^{n^2}f_i*\binom{m-i+n}{n}\)
设 \(dp[i][j][k]\) 表示 \(1\sim i\) 被分成 \(j\) 段所需距离为 \(k\) 的方案数。
新开一段就是 \(dp[i][j+1][k+1]+=dp[i-1][j][k]*(j+1)\)(有 \(j+1\) 个位置可以选)
合并到一段开头或结尾就是 \(dp[i][j][k+i]+=dp[i-1][j][k]*(2*j)\)
合并两段就是 \(dp[i][j-1][k+(i*2-1)]+=dp[i-1][j][k]*(j-1)\)(有 \(j-1\) 个位置可以选)
最后的 \(f_k\) 就是 \(dp[n][1][k]\),时间复杂度 \(O(n^4)\)
考虑一下排列组合怎么求,由于模数不一定是质数,
我一开始以为要质因数分解,写完之后发现其实可以把 \(x+n\) 加进去之后再将 \(x\) 删掉,
删除的过程实际上直接用最大公约数删除就可以了。
这样的时间复杂度是 \(O(n^3\log m)\) 的。
其实还有一种方法是利用杨辉三角的递推公式矩阵加速递推,
然后再用杨辉三角把所有的值都求出来,虽然复杂度相同,不过常数有点大。
注意第一种方法求单个组合数实际上是 \(O(n\log m)\),但是由于 \(R-L\) 在平方范围内,所以看起来是立方的。
并且通过第一种方法(\(C(a,b)\) 的 \(b\) 固定)用杨辉三角倒推回去就可以在 \(O(n^2\log m)\) 的复杂度下得到一行的组合数。
但是用杨辉三角的方法(\(C(a,b)\) 的 \(a\) 固定)一定是三次方的,所以还是不要用矩阵乘法吧。
代码(矩阵乘法)
#include <iostream>
using namespace std;
const int N=111;
struct maix{int p[N][N];}A,ANS;
int dp[N][N*N],n,m,mod,L,R,mid,ans;
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
maix mul(maix A,maix B,int t){
maix C;
for (int i=0;i<=t;++i)
for (int j=0;j<=n;++j){
C.p[i][j]=0;
for (int k=0;k<=n;++k)
Mo(C.p[i][j],1ll*A.p[i][k]*B.p[k][j]%mod);
}
return C;
}
int main(){
ios::sync_with_stdio(0);
cin>>n>>m>>mod,dp[1][1]=1,mid=(n+1)>>1;
L=n*(n+1)/2,R=n*(n+3)-mid*(mid+2);
if (L>m){
cout<<0;
return 0;
}
if (R>m) R=m;
for (int i=2;i<=n;++i){
for (int k=R;k;--k)
for (int j=1;j<i;++j)
if (dp[j][k]){
int t=dp[j][k];
if (j>1&&k+(i*2-1)<=R) Mo(dp[j-1][k+(i*2-1)],t*(j-1ll)%mod);
if (k+i<=R) Mo(dp[j][k+i],2ll*t*j%mod);
if (k<R) Mo(dp[j+1][k+1],t*(j+1ll)%mod);
dp[j][k]=0;
}
}
A.p[0][0]=ANS.p[0][0]=1;
for (int i=1;i<=n;++i)
A.p[i-1][i]=A.p[i][i]=1;
for (int t=m-R+n;t;t>>=1,A=mul(A,A,n))
if (t&1) ANS=mul(ANS,A,0);
for (int i=R;i>=L;--i){
if (dp[1][i]) Mo(ans,1ll*dp[1][i]*ANS.p[0][n]%mod);
for (int j=n;j;--j) Mo(ANS.p[0][j],ANS.p[0][j-1]);
}
cout<<ans;
return 0;
}
代码(插入 \(x+n\) 再删除 \(x\))
#include <iostream>
using namespace std;
const int N=111;
int dp[N][N*N],n,m,mod,L,R,mid,ans,a[N],o=1;
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
int gcd(int x,int y){return y?gcd(y,x%y):x;}
int main(){
ios::sync_with_stdio(0);
cin>>n>>m>>mod,dp[1][1]=1,mid=(n+1)>>1;
L=n*(n+1)/2,R=n*(n+3)-mid*(mid+2);
if (L>m){
cout<<0;
return 0;
}
if (R>m) R=m;
for (int i=2;i<=n;++i){
for (int k=R;k;--k)
for (int j=1;j<i;++j)
if (dp[j][k]){
int t=dp[j][k];
if (j>1&&k+(i*2-1)<=R) Mo(dp[j-1][k+(i*2-1)],t*(j-1ll)%mod);
if (k+i<=R) Mo(dp[j][k+i],2ll*t*j%mod);
if (k<R) Mo(dp[j+1][k+1],t*(j+1ll)%mod);
dp[j][k]=0;
}
}
for (int i=1;i<=n;++i) a[i]=m-R+n-i+1;
for (int i=2;i<=n;++i)
for (int j=1,x=i;j<=n&&x>1;++j){
int GCD=gcd(a[j],x);
x/=GCD,a[j]/=GCD;
}
for (int i=R;i>=L;--i){
int now=1;
for (int j=1;j<=n;++j) now=1ll*now*a[j]%mod;
if (dp[1][i]) Mo(ans,1ll*dp[1][i]*now%mod);
a[o]=m-i+n+1,o=o%n+1;
for (int j=1,x=m-i+1;j<=n&&x>1;++j){
int GCD=gcd(a[j],x);
x/=GCD,a[j]/=GCD;
}
}
cout<<ans;
return 0;
}
#排列组合,dp#LOJ 6069 「2017 山东一轮集训 Day4」塔的更多相关文章
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj 6068. 「2017 山东一轮集训 Day4」棋盘
Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...
- [LOJ#6068]. 「2017 山东一轮集训 Day4」棋盘[费用流]
题意 题目链接 分析 考虑每个棋子对对应的横向纵向的极大区间的影响:记之前这个区间中的点数为 \(x\) ,那么此次多配对的数量即 \(x\) . 考虑费用流,\(S\rightarrow 横向区间 ...
- LOJ 6068「2017 山东一轮集训 Day4」棋盘
题意 一个 \(n\times n\) 的棋盘上面有若干障碍物. 定义两个棋子可以互相攻击当且仅当这两个棋子的横坐标或纵坐标相等而且中间不能隔着障碍物.(可以隔棋子) 有 \(q\) 次询问,每次询问 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
- loj6068. 「2017 山东一轮集训 Day4」棋盘 二分图,网络流
loj6068. 「2017 山东一轮集训 Day4」棋盘 链接 https://loj.ac/problem/6068 思路 上来没头绪,后来套算法,套了个网络流 经典二分图 左边横,右边列 先重新 ...
- loj #6077. 「2017 山东一轮集训 Day7」逆序对
#6077. 「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...
- LOJ #6074. 「2017 山东一轮集训 Day6」子序列
#6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...
- loj#6074. 「2017 山东一轮集训 Day6」子序列(矩阵乘法 dp)
题意 题目链接 Sol 设\(f[i][j]\)表示前\(i\)个位置中,以\(j\)为结尾的方案数. 转移的时候判断一下\(j\)是否和当前位置相同 然后发现可以用矩阵优化,可以分别求出前缀积和逆矩 ...
- LOJ#6075. 「2017 山东一轮集训 Day6」重建
题目描述: 给定一个 n个点m 条边的带权无向连通图 ,以及一个大小为k 的关键点集合S .有个人要从点s走到点t,现在可以对所有边加上一个非负整数a,问最大的a,使得加上a后,满足:s到t的最短路长 ...
随机推荐
- golang常用库包:http和API客户端请求库-go-resty
简介 golang 里的 http 标准库,发起 http 请求时,写法比较繁琐.所以智慧又"偷懒的"程序员们,发挥自己的创造力,写出了一些好用的第三方库,这里介绍其中的一个 ht ...
- 硬件开发笔记(十): 硬件开发基本流程,制作一个USB转RS232的模块(九):创建CH340G/MAX232封装库sop-16并关联原理图元器件
前言 有了原理图,可以设计硬件PCB,在设计PCB之间还有一个协同优先动作,就是映射封装,原理图库的元器件我们是自己设计的.为了更好的表述封装设计过程,本文描述了CH340G和MAX232芯片封装 ...
- django学习第十四天--Forms和ModelForm
Forms和ModelForm 进行数据校验,先看数据校验的过程 注册页面图解: 前端为了用户体验会做一些校验,不满足校验要求会报错 服务端也会对数据进行一些校验,不满足校验要求会报错 数据库也会对数 ...
- offline RL | 读读 Decision Transformer
论文标题:Decision Transformer: Reinforcement Learning via Sequence Modeling,NeurIPS 2021,6 6 7 9 poster( ...
- 【Azure 事件中心】Azure Event Hub客户端遇见 Expired Heartbeat 错误
问题描述 Azure Event Hub 在消费数端中,经常性遇见 Expired Heartbeat 错误 (consumer-xxxxxxxxxxxxx-c84873c6c828e8df6c843 ...
- 【Azure 事件中心】Event Hub服务中的度量值指标介绍
问题描述 Event Hub服务中的度量值指标解说 1)request和message的区别 2)capture backlog 和 capture message 怎么理解 3)quota exce ...
- 【Azure API 管理】APIM不能连接到 App Service (APIM cannot connect to APP service)
问题描述 APIM 无法正确连接到App Service,返回500错误: { "statusCode": 500, "message": "Inte ...
- 学习ASP.NET MVC 编程系列文章目录
学习ASP.NET MVC(一)--我的第一个ASP.NET MVC应用程序 学习ASP.NET MVC(二)--我的第一个ASP.NET MVC 控制器 学习ASP.NET MVC(三)--我的第一 ...
- element_ui 知识点整理
第一章复习,树型组件数据填充:数据组件需要的数据绑定到:data 但是具体那些字绑生成标签需要在定义一人:props ="这儿绑定对象" 对象中label children ...
- XAF新手入门 - XAF设计模式探讨
前言 刚接触XAF的小伙伴可能会有一个疑惑,XAF中有Model(BusinessObject).View.Controller,感觉明显是一个MVC的设计模式,但当你用MVC的设计模式与其对应时,又 ...