C# pythonnet(1)_传感器数据清洗算法
Python代码如下
import pandas as pd # 读取数据
data = pd.read_csv('data_row.csv') # 检查异常值
def detect_outliers(data):
outliers = []
for col in data.columns:
q1 = data[col].quantile(0.25)
q3 = data[col].quantile(0.75)
iqr = q3 - q1
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
outliers.extend(data[(data[col] < lower_bound) | (data[col] > upper_bound)].index)
return list(set(outliers)) outliers = detect_outliers(data)
print("异常数据数量:", len(outliers))
# 处理异常值
data.drop(outliers, inplace=True) # 保存清洗后的数据
data.to_csv('clean_data_row.csv', index=False)
下面我们修改成C#代码
创建控制台程序,Nuget安装 CsvHelper 和 pythonnet
public class Program
{
const string PathToPythonDir = "D:\\Python311";
const string DllOfPython = "python311.dll"; static void Main(string[] args)
{
// 数据清洗
CleanData();
}
/// <summary>
/// 数据清洗
/// </summary>
static void CleanData()
{
var originDatas = ReadCsvWithCsvHelper("data_row.csv"); var outliers = DetectOutliers(originDatas); var outlierHashset = new HashSet<int>(outliers); // 清洗过后的数据
var cleanDatas = originDatas.Where((r, index) => !outlierHashset.Contains(index)).ToList(); try
{
Runtime.PythonDLL = Path.Combine(PathToPythonDir, DllOfPython); PythonEngine.Initialize();
using (Py.GIL())
{
dynamic pd = Py.Import("pandas");
dynamic np = Py.Import("numpy");
dynamic plt = Py.Import("matplotlib.pyplot");
dynamic fft = Py.Import("scipy.fftpack"); dynamic oData = np.array(originDatas.ToArray());
int oDataLength = oData.__len__();
dynamic data = np.array(cleanDatas.ToArray());
int dataLength = data.__len__(); // 绘制原始数据图和清洗后数据图
plt.figure(figsize: new dynamic[] { 12, 6 }); // 原始数据图
plt.subplot(1, 2, 1);
plt.plot(np.arange(oDataLength), oData);
plt.title("Original Datas"); // 清洗后数据图
plt.subplot(1, 2, 2);
plt.plot(np.arange(dataLength), data);
plt.title("Clean Datas"); // 布局调整,防止重叠
plt.tight_layout();
// 显示图表
plt.show();
}
}
catch (Exception e)
{
Console.WriteLine("报错了:" + e.Message + "\r\n" + e.StackTrace);
}
} /// <summary>
/// 检测异常值
/// </summary>
/// <param name="datas">原始数据集合</param>
/// <returns>返回异常值在集合中的索引</returns>
static List<int> DetectOutliers(List<double[]> datas)
{
List<int> outliers = new List<int>();
var first = datas.First();
for (int i = 0; i < first.Length; i++)
{
var values = datas.AsEnumerable().Select((row, index) => Tuple.Create(row[i], index)).ToArray(); double q1 = Enumerable.OrderBy(values, x => x.Item1).ElementAt((int)(values.Length * 0.25)).Item1;
double q3 = Enumerable.OrderBy(values, x => x.Item1).ElementAt((int)(values.Length * 0.75)).Item1;
double iqr = q3 - q1;
double lowerBound = q1 - 1.5 * iqr;
double upperBound = q3 + 1.5 * iqr; outliers.AddRange(values.AsEnumerable()
.Where(row => row.Item1 < lowerBound || row.Item1 > upperBound)
.Select(row => row.Item2));
}
return outliers.Distinct().ToList();
} /// <summary>
/// 读取CSV数据
/// </summary>
/// <param name="filePath">文件路径</param>
/// <returns>文件中数据集合,都是double类型</returns>
static List<double[]> ReadCsvWithCsvHelper(string filePath)
{
using (var reader = new StreamReader(filePath))
using (var csv = new CsvReader(reader, CultureInfo.InvariantCulture))
{
var result = new List<double[]>();
// 如果你的CSV文件有标题行,可以调用ReadHeader来读取它们
csv.Read();
csv.ReadHeader();
while (csv.Read())
{
result.Add(new double[] {
csv.GetField<double>(0),
csv.GetField<double>(1),
csv.GetField<double>(2),
});
}
return result;
}
}
}
以下是运行后结果,左边是原始数据折线图,右边是清洗后数据折线图
源代码:https://gitee.com/Karl_Albright/csharp-demo/tree/master/PythonnetDemo/PythonnetClearData
抽稀算法
def down_sampling(sig,factor=2, axis=0):
'''
降采样
Inputs:
sig --- numpy array, 信号数据数组
factor --- int, 降采样倍率
axis --- int, 沿着哪个轴进行降采样
'''
Temp=[':']*sig.ndim
Temp[axis]='::'+str(factor)
return eval('sig['+','.join(Temp)+']')
/// <summary>
/// 降采样,其实就是抽稀算法
/// </summary>
static List<double[]> DownSampling(int factor = 2, int axis = 0)
{
if (axis != 0 && axis != 1)
throw new ArgumentException("Axis must be 0 or 1 for a 2D array."); var datas = ReadCsvWithCsvHelper("clean_data_row3.csv"); int dim0 = datas.Count;
var first = datas.First();
int dim1 = first.Length; var result = new List<double[]>();
if (axis == 0)
{
var xAxis = dim0 / factor;
var yAxis = dim1;
for (int i = 0; i < xAxis; i++)
{
result.Add(datas[i * factor]);
}
}
else if (axis == 1)
{
var xAxis = dim0;
var yAxis = dim1 / factor;
var item = new double[yAxis];
for (int i = 0; i < xAxis; i++)
{
var deviceData = datas[i];
for (int j = 0; j < yAxis; j++)
{
item[j] = deviceData[j * factor];
}
result.Add(item);
}
}
return result;
}
源代码:https://gitee.com/Karl_Albright/csharp-demo/tree/master/PythonnetDemo/PythonnetClearData
C# pythonnet(1)_传感器数据清洗算法的更多相关文章
- java数据结构_笔记(5)_图的算法
图的算法 1 图的遍历图的遍历就是从图中某个顶点出发,按某种方法对图中所有顶点访问且仅访问一次.遍历算法是求解图的连通性问题.拓扑排序和求关键路径等算法的基础. 2 深度优先遍历从图中某个顶点V 出发 ...
- 『算法设计_伪代码』贪心算法_最短路径Dijkstra算法
Dijkstra算法实际上是一个贪婪算法(Greedy algorithm).因为该算法总是试图优先访问每一步循环中距离起始点最近的下一个结点.Dijkstra算法的过程如下图所示. 初始化 给定图中 ...
- Homekit_温湿度_人体红外_光强_传感器
市面上大多数,传感器产品多是简单的单个传感器进行售卖,这里我推荐一款四合一的产品,使用Homekit进行控制. 前置需求: 苹果手机一台 四合一传感器一个 USB数据线一根 介绍: 1.外观上是一个小 ...
- 计量经济与时间序列_自协方差(AutoCovariance)算法解析(Python)
1 样本的自协方差函数的通式如下: 2 其实,后面要计算的自相关函数也可以用自协方差来表示: # @author: "Thomas.Shih" # @date: 2018/3/5 ...
- Partition算法剖析
博文链接:http://haoyuanliu.github.io/2016/12/18/Partition%E7%AE%97%E6%B3%95%E5%89%96%E6%9E%90/ 对,我是来骗访问量 ...
- 关于开源中文搜索引擎架构coreseek中算法详解
Coreseek 是一款中文全文检索/搜索软件,以GPLv2许可协议开源发布,基于Sphinx研发并独立发布,专攻中文搜索和信息处理领域,适用于行业/垂直搜索.论坛/站内搜索.数据库搜索.文档/文献 ...
- 二分图的最大匹配——最大流EK算法
序: 既然是个图,并且求边数的最大值.那么这就可以转化为网络流的求最大流问题. 只需要将源点与其中一子集的所有节点相连,汇点与另一子集的所有节点相连,将所有弧的流量限制置为1,那么最大流 == 最大匹 ...
- [Contiki系列论文之1]Contiki——为微传感器网络而生的轻量级的、灵活的操作系统
说明:本系列文章翻译自Contiki之父Adam Dunkels经典论文,版权归原作者全部. Contiki是由Adam Dunkels及其团队开发的系统,研读其论文是对深入理解Contiki系统的最 ...
- iOS 神秘而又强大的传感器系统 (附demo)
iOS中的各种传感器: 随着科技的发展,机器感知人的行为!Goole的无人驾驶汽车到李彦宏的无人驾汽车,都带入了各种计算及传感. 为了研究自然现象和制造劳动工具,人类必须了解外界的各类信息.了解外界信 ...
- Google Cardboard的九轴融合算法——基于李群的扩展卡尔曼滤波
Google Cardboard的九轴融合算法 --基于李群的扩展卡尔曼滤波 极品巧克力 前言 九轴融合算法是指通过融合IMU中的加速度计(三轴).陀螺仪(三轴).磁场计(三轴),来获取物体姿态的方法 ...
随机推荐
- dotnet C# 获取当前设备可移动磁盘
本文告诉大家如何获取当前设备的可移动磁盘 在我的 WPF 应用里面,期望获取到 U 盘的所在盘进行一些有趣的逻辑.可以通过 DriveInfo 类的 GetDrives 获取当前所有的驱动器磁盘 再通 ...
- Node.js 万字教程
0. 基础概念 Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境,使用了一个事件驱动.非阻塞式 I/O 模型,让 JavaScript 运行在服务端的开发平台. ...
- 经验之谈:我为什么选择了这样一个激进的缓存大Key治理方案
一.引言 本文将结合我的一次Redis大Key的治理经验,来浅谈一下缓存大Key的治理方案选择.文中主要包括缓存大Key基础知识.大Key治理方案选择.大Key治理案例等,适合有一定开发经验的开发者阅 ...
- Django高级表单处理与验证实战
title: Django高级表单处理与验证实战 date: 2024/5/6 20:47:15 updated: 2024/5/6 20:47:15 categories: 后端开发 tags: D ...
- Git/SourceTree版本管理
目录 视频课程: 工作区: 文件状态: 回退版本: 合并分支 合并提交 冲突 删除分支 忽略文件 汉英对照表 多端同步 添加远程仓库 推送代码到远程仓库 拉取代码 视频课程: https://www. ...
- docker / compose 的安装 和 体验
文档 官网文档 视频 视频 简介 课程内容 1.Docker Compose 容器编排 2.Docker Swarm #集群 热扩容 需要在阿里上买服务器,至少冲100+以上的人民币 文档: 集群方式 ...
- Protues的串口工具Virtual Terminal
用Protues来验证ARM的串口发送,有两种办法,一种是用Protues的串口工具VirtualTerminal 第二种是用串口助手(此种方法,需要下载并安装虚拟串口软件,然后用虚拟串口连接虚拟硬件 ...
- C语言:窗口控制台颜色改变(不断换色)
了解了stdlib头文件中的system 函数之后突发奇想想要做一个蹦迪效果后台 代码如下: #include <stdio.h> #include <stdlib.h> #i ...
- 4G LTE/EPC UE 的业务请求流程
目录 文章目录 目录 UE 发起业务请求(Service Request)流程 UE 侧发起的业务请求流程 网络侧发起的业务请求流程 UE 发起业务请求(Service Request)流程 作用:附 ...
- pageoffice6 在线编辑 word 文件时禁止拷贝到外部
有些特殊情况下,希望用户可以在线编辑Word文档,也允许用户拷贝本地电脑或网络上的资料到Word文档中进行编辑,但是不希望用户把在线Word文档中的内容另存到本地或选择并拷贝出去,此时只是禁用另存.禁 ...