Solution -「BZOJ 3779」重组病毒
Description
Link.
Given is a tree. Every node initially has a color which is different from others'. (called \(col_{x}\))
Def: \(\text{dis}(x,y)\): the number of different colors on the simple path between x and y.
Supporting the following operations:
RELEASE x
: For each \(y\) on \(\text{path}(x,rt)\), make \(col_{y}\)=a new color which doesn't exist before.RECENTER x
: Make \(x\) become the new root after runningRELEASE x
.REQUEST x
: Print: for each \(y\) in \(\text{subtree}(x)\), the sum of \(\text{dis}(y,rt)\) divided the number of nodes in \(\text{subtree}(x)\).
Solution
Link Cut Tree.
We can know that \(\text{dis}(x,rt)\) is the number of Fake Edges on \(\text{path}(x,rt)\) pluses one.
If we change a Real Edge \((u,v)\), where \(dep_{u}<dep_{v}\) into a Fake Edge, for each node \(x\) in \(\text{subtree}(v)\), \(\text{dis}(x,rt)\) will be decreased by \(1\).
Vice versa.
In order to support such operation: decrease the subtree by \(1\), we can fix the DFS order of the given tree.
However, we also need to change the root. How can we fix the DFS order of the given tree?
Let's have a discussion. Denote \(x\) for the current operating node, \(rt\) for the current root.
- if \(rt=x\): modify the whole tree directly.
- if \(rt\) isn't in \(\text{subtree}(x)\): modify \(\text{subtree}(x)\).
- if \(rt\) is in \(\text{subtree}(x)\): modify \(\text{subtree}(x)\) and cancel the modfication of \(\text{subtree}(rt)\)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
vector<int> e[100010];
int n,m,indfn[100010],outdfn[100010],sjc,fa[100010][20],dep[100010],rtnow=1;
#define check(x,f) ((indfn[x]<indfn[f])|(indfn[x]>outdfn[f])) // check whether x isn't in subtree(f)
void dfs(int x,int las)
{
dep[x]=dep[las]+1,fa[x][0]=las,indfn[x]=++sjc;
for(int i=1;i^20;++i) fa[x][i]=fa[fa[x][i-1]][i-1];
for(unsigned int i=0;i<e[x].size();++i) if(e[x][i]^las) dfs(e[x][i],x);
outdfn[x]=sjc;
}
int getkth(int x,int k)
{
if(k==0) return x;
else
{
for(int i=0;i^20;++i) if((k>>i)&1) x=fa[x][i];
return x;
}
}
struct LinearTree
{
struct node
{
LL val,tag;
}nodes[400010];
void turn(int x,int l,int r)
{
if(nodes[x].tag)
{
int mid=(l+r)>>1;
nodes[x<<1].val+=(mid-l+1)*nodes[x].tag;
nodes[x<<1|1].val+=(r-mid)*nodes[x].tag;
nodes[x<<1].tag+=nodes[x].tag;
nodes[x<<1|1].tag+=nodes[x].tag;
nodes[x].tag=0;
}
}
void ins(int l,int r,int x,int fr,int ba,int val)
{
if(fr>ba||l>ba||r<fr) return;
if(l>=fr&&r<=ba) nodes[x].val+=(r-l+1)*val,nodes[x].tag+=val;
else
{
int mid=(l+r)>>1;
turn(x,l,r);
ins(l,mid,x<<1,fr,ba,val);
ins(mid+1,r,x<<1|1,fr,ba,val);
nodes[x].val=nodes[x<<1].val+nodes[x<<1|1].val;
}
}
LL find(int l,int r,int x,int fr,int ba)
{
if(fr>ba||l>ba||r<fr) return 0;
if(l>=fr&&r<=ba) return nodes[x].val;
else
{
int mid=(l+r)>>1;
turn(x,l,r);
return find(l,mid,x<<1,fr,ba)+find(mid+1,r,x<<1|1,fr,ba);
}
}
void modify(int x,LL val)
{
if(rtnow==x) ins(1,n,1,1,n,val);
else if(check(rtnow,x)) ins(1,n,1,indfn[x],outdfn[x],val);
else
{
int tmp=getkth(rtnow,dep[rtnow]-dep[x]-1);
ins(1,n,1,1,indfn[tmp]-1,val);
ins(1,n,1,outdfn[tmp]+1,n,val);
}
}
}lrt;
struct LinkCutTree
{
#define wis(x) (nodes[nodes[x].fa].ch[1]==(x))
#define isrt(x) ((nodes[nodes[x].fa].ch[0]^(x))&&(nodes[nodes[x].fa].ch[1]^(x)))
struct node
{
int ch[2],fa;
bool rev;
}nodes[100010];
void turn_down(int x)
{
if(nodes[x].rev)
{
swap(nodes[x].ch[0],nodes[x].ch[1]);
if(nodes[x].ch[0]) nodes[nodes[x].ch[0]].rev^=1;
if(nodes[x].ch[1]) nodes[nodes[x].ch[1]].rev^=1;
nodes[x].rev=0;
}
}
void turn_whole(int x)
{
if(!isrt(x)) turn_whole(nodes[x].fa);
turn_down(x);
}
void rotate(int x)
{
int f=nodes[x].fa,ff=nodes[f].fa,t=wis(x);
nodes[x].fa=ff;
if(!isrt(f)) nodes[ff].ch[wis(f)]=x;
nodes[f].ch[t]=nodes[x].ch[t^1];
nodes[nodes[x].ch[t^1]].fa=f;
nodes[x].ch[t^1]=f;
nodes[f].fa=x;
}
void splay(int x)
{
turn_whole(x);
while(!isrt(x))
{
int f=nodes[x].fa;
if(!isrt(f)) rotate((wis(x)^wis(f))?x:f);
rotate(x);
}
}
int findleft(int x)
{
turn_down(x);
while(nodes[x].ch[0]) x=nodes[x].ch[0],turn_down(x);
return x;
}
void access(int x)
{
for(int y=0;x;y=x,x=nodes[x].fa)
{
splay(x);
if(nodes[x].ch[1]) lrt.modify(findleft(nodes[x].ch[1]),1);
if(y) lrt.modify(findleft(y),-1);
nodes[x].ch[1]=y;
}
}
void makert(int x){access(x),splay(x),nodes[x].rev^=1;}
}lct;
char opt[20];
int opx;
template<typename T>
void read(T &hhh)
{
T x=0,f=1;
char c=getchar();
while(c<'0'||c>'9')
{
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+(c^'0'),c=getchar();
if(~f) hhh=x;
else hhh=-x;
}
int main()
{
read(n),read(m);
for(int i=1,x,y;i<n;++i)
{
read(x),read(y);
e[x].emplace_back(y);
e[y].emplace_back(x);
}
dfs(1,0);
for(int i=1;i<=n;++i) lrt.ins(1,n,1,indfn[i],indfn[i],dep[i]),lct.nodes[i].fa=fa[i][0];
while(m--)
{
scanf("%s",opt),read(opx);
if(strcmp(opt,"RELEASE")==0) lct.access(opx);
else if(strcmp(opt,"RECENTER")==0) lct.makert(opx),rtnow=opx;
else
{
if(rtnow==opx) printf("%.10f\n",double(lrt.find(1,n,1,1,n))/n);
else if(check(rtnow,opx)) printf("%.10f\n",double(lrt.find(1,n,1,indfn[opx],outdfn[opx]))/(outdfn[opx]-indfn[opx]+1));
else
{
int tmp=getkth(rtnow,dep[rtnow]-dep[opx]-1);
printf("%.10f\n",double(lrt.find(1,n,1,1,indfn[tmp]-1)+lrt.find(1,n,1,outdfn[tmp]+1,n))/(indfn[tmp]+n-outdfn[tmp]-1));
}
}
}
return 0;
}
Solution -「BZOJ 3779」重组病毒的更多相关文章
- 【bzoj 3779】重组病毒
Description 黑客们通过对已有的病毒反编译,将许多不同的病毒重组,并重新编译出了新型的重组病毒.这种病毒的繁殖和变异能力极强.为了阻止这种病毒传播,某安全机构策划了一次实验,来研究这种病毒. ...
- Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...
- Solution -「BZOJ #3786」星系探索
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个点的有根树,点有点权,支持 \(q\) 次操作: 询问 \(u\) 到根的点权和: 修改 \(u\) ...
- Solution -「BZOJ 4316」小C的独立集
\(\mathcal{Description}\) Link. 求包含 \(n\) 个结点 \(m\) 条边的仙人掌的最大独立集. \(n\le5\times10^4\),\(m\le6\ ...
- Solution -「BZOJ 3331」压力
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),令 \(u\) 到 \ ...
- 「BZOJ 4228」Tibbar的后花园
「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...
- 「BZOJ 3645」小朋友与二叉树
「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...
- 「BZOJ 4502」串
「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...
- 「BZOJ 4289」 PA2012 Tax
「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...
- 「BZOJ 2534」 L - gap字符串
「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...
随机推荐
- 【技术积累】Java中的泛型【一】
泛型是什么 Java中的泛型是一种能够让用户在编写代码时避免使用明确的类型而进行类型参数化的机制.Java中的泛型可以让编程者在代码编写时不必关心具体类型,只用关心类型之间的关系和相互转换,从而在编写 ...
- 前端vue自定义简单实用下拉筛选 下拉菜单
前端vue自定义简单实用下拉筛选 下拉菜单, 下载完整代码请访问: https://ext.dcloud.net.cn/plugin?id=13020 效果图如下: #### 使用方法 ``` ...
- Python随机数据生成——Faker的使用
安装Faker pip install faker 导入模块及基本配置 # 导入Faker from faker import Faker # 初始化,设置locale为中文:默认是英文 fake = ...
- .Net 472&6.0 Razor编译时的小差异
前言 几个月前在进行着.Net 472到6.0的升级,复用原有代码,在对Razor进行迁移中,发现原运行正常的代码,却存在报错,深入研究发现是Core下对Razor编译有一些变动. 问题复现 472 ...
- Elasticsearch日常开发
2020-08-12 14:51:37 每次遇到ES开发,一般都是查询es里面的数据,今天我教大家一个简单的es的查询.废话不多说,直接上代码. 在pom文件中引入 <dependency> ...
- JPA自动生成POJO
原文地址 JPA自动生成POJO 通过表生成POJO类 这篇文章不涉及idea配置数据源教程,该文章使用前提是用户已配置好idea数据源 修改自带的生成类 import com.intellij.da ...
- Spring-Bean的依赖注入的数据类型
Spring-Bean的依赖注入的数据类型 除了对象的引用可以注入,普通数据类型,集合等都可以在容器中进行注入 数据的三种数据类型 普通数据类型 引用数据类型 集合数据类型 普通数据类型 public ...
- 一:wince 开发环境
1:下载相关文件,vs2008 可以自行搜索安装 链接:https://pan.baidu.com/s/1b2shwCqmc1o9x-zsy8CmeA 提取码:qing
- 何为DDD
从这一刻开始,请大家忘记自己是一名技术人员,用业务的角度来思考问题. 1.什么是DDD DDD(Domain-driven design,领域驱动设计),是一个很好的应用于微服务架构的方法论 DDD要 ...
- Llama2 论文中译版——开放式基础和微调聊天模型
Llama 2:开放式基础和微调聊天模型 写在前头 因为最近一直在使用 LLM 工具,所以在学习 Llama 2:开放式基础和微调聊天模型 这篇论文的期间,顺手将内容翻译了过来. 整片译文是由 Cha ...