Nearest cluster-based intrusion detection through convolutional neural networks

技术要点

So, the primary innovation of this study is the definition of a new deep learning pipeline, that couples the characteristics of a target network flow to the characteristics of the neighbour of the flow under consideration, which belongs to the same class, as well as the characteristics of the neighbour that belongs to the opposite class of the target flow.

Another innovation is that this joint information – the characteristics of the network flows coupled to the characteristics of the neighbour flows – is represented as multiple rows of image-like 2D pixel grids, instead of being concatenated into 1D vectors.

However, to the best of our knowledge, none of the existing state-of-the-art algorithms propose a 2D representation of the network flows, which encodes the neighbouring informa- tion in the imaging step. On the other hand, this is one of the innovative contributions of this study,

Similarly to the above-mentioned studies, we also adopt clus- tering to speed up the computation. However, we pursue this speeding-up with respect to the imaging stage, while the related works listed above mainly use clustering to accelerate the deep learning stage, by reducing the volume of data processed to train the networks. We also perform experiments proving that the efficiency in our methodology is gained by preserving the accuracy of the final CNNs trained with the produced images.


因此,本研究的主要创新之处在于定义了一种新的深度学习管道,它将目标网络流的特征与所考虑的同类别流的邻居的特征相结合,以及属于目标流相反类的邻居的特性。

另一个创新是,这种联合信息——网络流的特征与相邻流的特征耦合——被表示为多行类似图像的2D像素网格,而不是被连接成一维向量。

然而,据我们所知,现有的最先进的算法都没有提出网络流的二维表示,在成像步骤中对邻近的信息进行编码。另一方面,这是本研究的创新贡献之一,

与上述研究相似,我们也采用聚类来加快计算速度。然而,我们在成像阶段追求这种加速,而上面列出的相关工作主要使用聚类来加速深度学习阶段,通过减少处理的数据量来训练网络。我们还进行了实验,证明了我们的方法的效率是通过保持最后用生成的图像训练的cnn的准确性来获得的。

关键文献

  • Z. Li, Z. Qin, K. Huang, X. Yang, S. Ye, Intrusion detection using convolutional neural networks for representation learning, in: ICONIP, Springer International Publishing, 2017, pp. 858–866.
  • T. Kim, S.C. Suh, H. Kim, J. Kim, J. Kim, An encoding technique for cnn-based network anomaly detection, in: 2018 IEEE International Conference on Big Data (Big Data), IEEE, 2018, pp. 2960–2965.
  • K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,in: 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), IEEE Computer Society, 2016, pp. 770–778.
  • C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D.Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in:2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),IEEE, 2015, pp. 1–9.
  • K. Millar, A. Cheng, H.G. Chew, C.-C. Lim, Using convolutional neural networks for classifying malicious network traffic, Deep Learn. Appl. Cyber Secur. (2019) 103–126.

Nearest cluster-based intrusion detection through convolutional neural networks 笔记的更多相关文章

  1. Convolutional Neural Networks 笔记

    1 Foundations of Convolutional Neural Networks 1.1 cv问题 图像分类.目标检测.风格转换.但是高像素的图片会带来许多许多的特征. 1.2 边缘检测( ...

  2. Bag of Tricks for Image Classification with Convolutional Neural Networks笔记

    以下内容摘自<Bag of Tricks for Image Classification with Convolutional Neural Networks>. 1 高效训练 1.1 ...

  3. tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

    今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real- ...

  4. 《Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks》论文笔记

    论文题目<Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Ne ...

  5. [C6] Andrew Ng - Convolutional Neural Networks

    About this Course This course will teach you how to build convolutional neural networks and apply it ...

  6. 深度卷积神经网络用于图像缩放Image Scaling using Deep Convolutional Neural Networks

    This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning base ...

  7. [转] Understanding Convolutional Neural Networks for NLP

    http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...

  8. Convolutional Neural Networks: Step by Step

    Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by ...

  9. [转]An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...

  10. Understanding Convolutional Neural Networks for NLP

    When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...

随机推荐

  1. 【实战分享】使用 Go 重构流式日志网关

    项目背景 分享之前,先来简单介绍下该项目在流式日志处理链路中所处的位置. 流式日志网关的主要功能是提供 HTTP 接口,接收 CDN 边缘节点上报的各类日志(访问日志/报错日志/计费日志等),将日志作 ...

  2. shell编程-文件归档

    需求说明:设置定时任务,每天凌晨1点进行将指定目录(/root/scripts)下文件按照archive_目录名_年月日.tar.gz的格式归档存放到/root/archive 路径下. 1.编写脚本 ...

  3. CKS 考试题整理 (15)-镜像扫描ImagePolicyWebhook

    Context cluster 上设置了容器镜像扫描器,但尚未完全集成到cluster 的配置中. 完成后,容器镜像扫描器应扫描并拒绝易受攻击的镜像的使用. Task 注意:你必须在 cluster ...

  4. 【保姆级教程】Vue项目调试技巧

    前言 在Vue项目开发过程中,当遇到应用逻辑出现错误,但又无法准确定位的时候,知晓Vue项目调试技巧至关重要,debug是必备技能. 同后台项目开发一样,可以在JS实现的应用逻辑中设置断点,并进行单步 ...

  5. 使用CosmosDB进行大规模数据的实时数据处理和流式传输

    目录 使用 Cosmos DB 进行大规模数据的实时数据处理和流式传输 背景介绍 文章目的 目标受众 技术原理及概念 基本概念解释 技术原理介绍 相关技术比较 实现步骤与流程 准备工作:环境配置与依赖 ...

  6. memcached使用中踩的一些坑

    背景 线上启用memcached(以下简称mc)作为热点缓存组件已经多年,其稳定性和性能都经历住了考验,这里记录一下踩过的几个坑. 大key存储 某年某月某日,观察mysql的读库CPU占比有些异常偏 ...

  7. windows安全中心打不开

    解决win11打不开安全中心的问题!!! 许多用户在最近都升级了Windows11系统,而且不少用户最近在使用Win11的时候发现自己打不开Windows安全中心 操作方法: 管理员权限打开Power ...

  8. 【SpringBoot】Session共享

    本文参考 Spring Boot 一个依赖搞定 session 共享,没有比这更简单的方案了! 在传统的单服务架构中,只有一个服务器,那就不会存在session共享的问题,但如果在分布式/集群项目中, ...

  9. (占坑编辑中)hexo博客github page更换域名

    hexo博客github page更换域名 檗科下的Cname文件一定要改为最近的域名

  10. 简单了解下最近正火的SwissTable

    去年看到字节跳动给golang提了issue建议把map的底层实现改成SwissTable的时候,我就有想写这篇博客了,不过因为种种原因一直拖着. 直到最近遇golang官方开始讨论为了是否要接受Sw ...