代码随想录算法训练营

122.买卖股票的最佳时机II

题目链接:122.买卖股票的最佳时机II

给定一个数组,它的第 i个元素是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

  • 输入: [7,1,5,3,6,4]
  • 输出: 7
  • 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

总体思路

买卖股票获利的因素在于利差,通过低价买入、高价卖出即可获得利差,因此本题必须保证买入时价格最低,同时卖出时价格最高。

如果想到其实最终利润是可以分解的,那么本题就很容易了!

如何分解呢?

假如第0天买入,第3天卖出,那么利润为:prices[3] - prices[0]。

相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。

此时就是把利润分解为每天为单位的维度,而不是从0天到第3天整体去考虑!

那么根据prices可以得到每天的利润序列:(prices[i] - prices[i - 1]).....(prices[1] - prices[0])。



其实我们需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间

那么只收集正利润就是贪心所贪的地方!

局部最优:收集每天的正利润,全局最优:求得最大利润

局部最优可以推出全局最优,找不出反例,试一试贪心。

代码如下:

class Solution {
public:
int maxProfit(vector<int>& prices) {
int result = 0;
for (int i = 1; i < prices.size(); i++) {
result += max(prices[i] - prices[i - 1], 0);
}
return result;
}
};

55. 跳跃游戏

题目链接:55. 跳跃游戏

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个位置。

示例 1:

  • 输入: [2,3,1,1,4]
  • 输出: true
  • 解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。

总体思路

不一定非要明确一次究竟跳几步,每次取最大的跳跃步数,这个就是可以跳跃的覆盖范围。

这个范围内,别管是怎么跳的,反正一定可以跳过来。

那么这个问题就转化为跳跃覆盖范围究竟可不可以覆盖到终点!

每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点

局部最优推出全局最优,找不出反例,试试贪心!

i每次移动只能在cover的范围内移动,每移动一个元素,cover得到该元素数值(新的覆盖范围)的补充,让i继续移动下去。

而cover每次只取 max(该元素数值补充后的范围, cover本身范围)。

如果cover大于等于了终点下标,直接return true就可以了。

代码实现:

class Solution {
public:
bool canJump(vector<int>& nums) {
int cover = 0;
if (nums.size() == 1) return true; // 只有一个元素,就是能达到
for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
cover = max(i + nums[i], cover);
if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
}
return false;
}
};

45.跳跃游戏II

题目链接:45.跳跃游戏II

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

你的目标是使用最少的跳跃次数到达数组的最后一个位置。

示例:

  • 输入: [2,3,1,1,4]
  • 输出: 2
  • 解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

    说明: 假设你总是可以到达数组的最后一个位置。

总体思路

和上一题一样,仍然通过贪心算法得出,但要判断跳跃中的每一次的数值,通过定义一个全局变量jump并每次自增获得最终结果。

所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最小步数!

这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖



从图中可以看出来,就是移动下标达到了当前覆盖的最远距离下标时,步数就要加一,来增加覆盖距离。最后的步数就是最少步数。

这里还是有个特殊情况需要考虑,当移动下标达到了当前覆盖的最远距离下标时

  • 如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。
  • 如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。
// 版本一
class Solution {
public:
int jump(vector<int>& nums) {
if (nums.size() == 1) return 0;
int curDistance = 0; // 当前覆盖最远距离下标
int ans = 0; // 记录走的最大步数
int nextDistance = 0; // 下一步覆盖最远距离下标
for (int i = 0; i < nums.size(); i++) {
nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖最远距离下标
if (i == curDistance) { // 遇到当前覆盖最远距离下标
if (curDistance < nums.size() - 1) { // 如果当前覆盖最远距离下标不是终点
ans++; // 需要走下一步
curDistance = nextDistance; // 更新当前覆盖最远距离下标(相当于加油了)
if (nextDistance >= nums.size() - 1) break; // 下一步的覆盖范围已经可以达到终点,结束循环
} else break; // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束
}
}
return ans;
}
};

代码随想录算法训练营Day31 贪心算法| 122.买卖股票的最佳时机II 55. 跳跃游戏 45.跳跃游戏II的更多相关文章

  1. 刷题-力扣-122. 买卖股票的最佳时机 II

    122. 买卖股票的最佳时机 II 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell ...

  2. 【Leetcode】【简单】【122. 买卖股票的最佳时机 II】【JavaScript】

    题目描述 122. 买卖股票的最佳时机 II 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票) ...

  3. Leetcode之动态规划(DP)专题-122. 买卖股票的最佳时机 II(Best Time to Buy and Sell Stock II)

    Leetcode之动态规划(DP)专题-122. 买卖股票的最佳时机 II(Best Time to Buy and Sell Stock II) 股票问题: 121. 买卖股票的最佳时机 122. ...

  4. Java实现 LeetCode 122 买卖股票的最佳时机 II

    122. 买卖股票的最佳时机 II 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意: ...

  5. 【力扣】122. 买卖股票的最佳时机 II

    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次 ...

  6. 力扣 122 买卖股票的最佳时机II

    力扣 122 买卖股票的最佳时机II 思路: 动态规划,表面上是\(O(2^n)\)的搜索空间,实际上该天的选择只与前一天的状态(是否持有股票)有关.从收益的角度来看,确实每一天的不同选择都会产生不同 ...

  7. LeetCode初级算法之数组:122 买卖股票的最佳时机 II

    买卖股票的最佳时机 II 题目地址:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-ii/ 给定一个数组,它的第 i ...

  8. Leetcode 122.买卖股票的最佳时机II

    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次 ...

  9. [LeetCode] 122. 买卖股票的最佳时机ii best-time-to-buy-and-sell-stock-ii(贪心算法)

    思路: 只要第二天的价格高于第一天,就进行交易.(这样的话就默认可以同一天内先卖出再买进) class Solution(object): def maxProfit(self, prices): & ...

  10. 贪心——122.买卖股票的最佳时机II

    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次 ...

随机推荐

  1. 141. Linked List Cycle (Easy)

    ps:能力有限,若有错误及纰漏欢迎指正.交流 Linked List Cycle (Easy) https://leetcode.cn/problems/linked-list-cycle/descr ...

  2. Cesium近地天空盒,解决图片旋转问题

    前言 当我们使用官网的例子设置天空盒后,会发现天空云彩是斜的,比如下边这张图:通过查阅网上资料,需要修改cesium的源码,以下是修改后skybox的源码,在自己的项目中引入即可: 实现代码 cons ...

  3. jmeter常用的命令行及参数

    一.运行方式分类 GUI方式:图形界面方式运行 CLI方式:command line命令行,jmeter的脚本可以通过命令行用命令进行执行 二.用命令行执行的优势: 1.图形化界面运行的时候会占用很大 ...

  4. 最强分布式搜索引擎——ElasticSearch

    最强分布式搜索引擎--ElasticSearch 本篇我们将会介绍到一种特殊的类似数据库存储机制的搜索引擎工具--ES elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以 ...

  5. Javascript 加密解密方法

    本文链接 https://www.cnblogs.com/zichliang/p/17265960.html Javascript 和 我之前发的 python加密 以及 go加密 解密不一样 不需要 ...

  6. 【性能优化】优雅地优化慢查询:缓存+SQL修改组合拳

    问题描述 单例数据库模式中,后端高并发请求多(读多写少),导致数据库压力过大,关键接口响应变慢,严重影响体验. 需求 减少接口的响应时间. 寻找解决方案 由于问题主要处在数据库压力过大的情况,采用两种 ...

  7. 四月十七日Java基础知识点

    1.默认构造方法:如果class前面有public修饰符,则默认的构造方法也会是public的.由于系统提供的默认构造方法往往不能满足需求,所以用户可以自己定义类的构造方法来满足需要,一旦用户为该类定 ...

  8. JS 一些基本正则校验

    记录下JS一些基本正则校验,以备后需. 1 //手机号码校验 2 function formCheckMobilePhone(data) { 3 var pattern = /^[1-9]{1}\d{ ...

  9. 论文解读( FGSM)《Adversarial training methods for semi-supervised text classification》

    论文信息 论文标题:Adversarial training methods for semi-supervised text classification论文作者:Taekyung Kim论文来源: ...

  10. Java学习笔记03

    1. 流程控制语句 在一个程序执行的过程中,各条语句的执行顺序对程序的结果是有直接影响的.所以,我们必须清楚每条语句的执行流程.而且,很多时候要通过控制语句的执行顺序来实现我们想要的功能. 1.1 分 ...