摘要:​YOLOv5并不是一个单独的模型,而是一个模型家族,包括了YOLOv5s、YOLOv5m、YOLO...

本文分享自华为云社区《YoloV5实战:手把手教物体检测——YoloV5》,作者: AI浩 。

摘要

YOLOV5严格意义上说并不是YOLO的第五个版本,因为它并没有得到YOLO之父Joe Redmon的认可,但是给出的测试数据总体表现还是不错。详细数据如下

YOLOv5并不是一个单独的模型,而是一个模型家族,包括了YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x、YOLOv5x+TTA,这点有点儿像EfficientDet。由于没有找到V5的论文,我们也只能从代码去学习它。总体上和YOLOV4差不多,可以认为是YOLOV5的加强版。

项目地址:GitHub - ultralytics/yolov5: YOLOv5 in PyTorch > ONNX > CoreML > TFLite

训练

1、下载代码

项目地址:https://github.com/ultralytics/YOLOv5,最近作者又更新了一些代码。

2、配置环境

matplotlib>=3.2.2

numpy>=1.18.5

opencv-python>=4.1.2

pillow

PyYAML>=5.3

scipy>=1.4.1

tensorboard>=2.2

torch>=1.6.0

torchvision>=0.7.0

tqdm>=4.41.0

3、准备数据集

数据集采用Labelme标注的数据格式,数据集从RSOD数据集中获取了飞机和油桶两类数据集,并将其转为Labelme标注的数据集。

数据集的地址: https://pan.baidu.com/s/1iTUpvA9_cwx1qiH8zbRmDg

提取码:gr6g

或者:LabelmeData.zip_yolov5实战-深度学习文档类资源-CSDN下载

将下载的数据集解压后放到工程的根目录。为下一步生成测试用的数据集做准备。如下图:

4、生成数据集

YoloV5的数据集和以前版本的数据集并不相同,我们先看一下转换后的数据集。

数据结构如下图:

images文件夹存放train和val的图片

labels里面存放train和val的物体数据,里面的每个txt文件和images里面的图片是一一对应的。

txt文件的内容如下:

格式:物体类别 x y w h

坐标是不是真实的坐标,是将坐标除以宽高后的计算出来的,是相对于宽和高的比例。

下面我们编写生成数据集的代码,新建LabelmeToYoloV5.py,然后写入下面的代码。

import os

import numpy as np

import json

from glob import glob

import cv2

from sklearn.model_selection import train_test_split

from os import getcwd
classes = ["aircraft", "oiltank"] # 1.标签路径 labelme_path = "LabelmeData/" isUseTest = True # 是否创建test集 # 3.获取待处理文件 files = glob(labelme_path + "*.json") files = [i.replace("\\", "/").split("/")[-1].split(".json")[0] for i in files] print(files) if isUseTest: trainval_files, test_files = train_test_split(files, test_size=0.1, random_state=55) else: trainval_files = files # split train_files, val_files = train_test_split(trainval_files, test_size=0.1, random_state=55)
def convert(size, box): dw = 1. / (size[0]) dh = 1. / (size[1]) x = (box[0] + box[1]) / 2.0 - 1 y = (box[2] + box[3]) / 2.0 - 1 w = box[1] - box[0] h = box[3] - box[2] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h)
wd = getcwd() print(wd)
def ChangeToYolo5(files, txt_Name): if not os.path.exists('tmp/'): os.makedirs('tmp/') list_file = open('tmp/%s.txt' % (txt_Name), 'w') for json_file_ in files: json_filename = labelme_path + json_file_ + ".json" imagePath = labelme_path + json_file_ + ".jpg" list_file.write('%s/%s\n' % (wd, imagePath)) out_file = open('%s/%s.txt' % (labelme_path, json_file_), 'w') json_file = json.load(open(json_filename, "r", encoding="utf-8")) height, width, channels = cv2.imread(labelme_path + json_file_ + ".jpg").shape for multi in json_file["shapes"]: points = np.array(multi["points"]) xmin = min(points[:, 0]) if min(points[:, 0]) > 0 else 0 xmax = max(points[:, 0]) if max(points[:, 0]) > 0 else 0 ymin = min(points[:, 1]) if min(points[:, 1]) > 0 else 0 ymax = max(points[:, 1]) if max(points[:, 1]) > 0 else 0 label = multi["label"] if xmax <= xmin: pass elif ymax <= ymin: pass else: cls_id = classes.index(label) b = (float(xmin), float(xmax), float(ymin), float(ymax)) bb = convert((width, height), b) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') print(json_filename, xmin, ymin, xmax, ymax, cls_id) ChangeToYolo5(train_files, "train") ChangeToYolo5(val_files, "val") ChangeToYolo5(test_files, "test")

这段代码执行完成会在LabelmeData生成每个图片的txt标注数据,同时在tmp文件夹下面生成训练集、验证集和测试集的txt,txt记录的是图片的路径,为下一步生成YoloV5训练和测试用的数据集做准备。在tmp文件夹下面新建MakeData.py文件,生成最终的结果,目录结构如下图:

打开MakeData.py,写入下面的代码。

import shutil
import os file_List = ["train", "val", "test"]
for file in file_List:
if not os.path.exists('../VOC/images/%s' % file):
os.makedirs('../VOC/images/%s' % file)
if not os.path.exists('../VOC/labels/%s' % file):
os.makedirs('../VOC/labels/%s' % file)
print(os.path.exists('../tmp/%s.txt' % file))
f = open('../tmp/%s.txt' % file, 'r')
lines = f.readlines()
for line in lines:
print(line)
line = "/".join(line.split('/')[-5:]).strip()
shutil.copy(line, "../VOC/images/%s" % file)
line = line.replace('JPEGImages', 'labels')
line = line.replace('jpg', 'txt')
shutil.copy(line, "../VOC/labels/%s/" % file)

执行完成后就可以生成YoloV5训练使用的数据集了。结果如下:

5、修改配置参数

打开voc.yaml文件,修改里面的配置参数

train: VOC/images/train/  # 训练集图片的路径

val: VOC/images/val/  # 验证集图片的路径

# number of classes

nc: 2 #检测的类别,本次数据集有两个类别所以写2
# class names names: ["aircraft", "oiltank"]#类别的名称,和转换数据集时的list对应

6、修改train.py的参数

cfg参数是YoloV5 模型的配置文件,模型的文件存放在models文件夹下面,按照需求填写不同的文件。

weights参数是YoloV5的预训练模型,和cfg对应,例:cfg配置的是yolov5s.yaml,weights就要配置yolov5s.pt

data是配置数据集的配置文件,我们选用的是voc.yaml,所以配置data/voc.yaml

修改上面三个参数就可以开始训练了,其他的参数根据自己的需求修改。修改后的参数配置如下:

parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')

parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml path')

parser.add_argument('--data', type=str, default='data/voc.yaml', help='data.yaml path')

修改完成后,就可以开始训练了。如下图所示:

7、查看训练结果

在经历了300epoch训练之后,我们会在runs文件夹下面找到训练好的权重文件和训练过程的一些文件。如图:

测试

首先需要在voc.yaml中增加测试集的路径,打开voc.yaml,在val字段后面增加test: tmp/test.txt这行代码,如图:

修改test.py中的参数,下面的这几个参数要修改。

parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', nargs='+', type=str, default='runs/exp7/weights/best.pt', help='model.pt path(s)')
parser.add_argument('--data', type=str, default='data/voc.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=2, help='size of each image batch')
parser.add_argument('--save-txt', default='True', action='store_true', help='save results to *.txt')

在275行 修改test的方法,增加保存测试结果的路径。这样测试完成后就可以在inference\images查看到测试的图片,在inference\output中查看到保存的测试结果。

如图:

下面是运行的结果:

点击关注,第一时间了解华为云新鲜技术~

YoloV5实战:手把手教物体检测的更多相关文章

  1. 【YOLOv5】手把手教你使用LabVIEW ONNX Runtime部署 TensorRT加速,实现YOLOv5实时物体识别(含源码)

    前言 上一篇博客给大家介绍了LabVIEW开放神经网络交互工具包[ONNX],今天我们就一起来看一下如何使用LabVIEW开放神经网络交互工具包实现TensorRT加速YOLOv5. 以下是YOLOv ...

  2. yolov5实战之皮卡丘检测

    前言 从接触深度学习开始一直都做的是人脸识别,基本上也一直都在用mxnet. 记得之前在刚接触的时候看到博客中写到,深度学习分三个层次,第一个层次是分类,第二个层次是检测,第三个层次是分割.人脸识别算 ...

  3. 手把手教你用Pytorch-Transformers——实战(二)

    本文是<手把手教你用Pytorch-Transformers>的第二篇,主要讲实战 手把手教你用Pytorch-Transformers——部分源码解读及相关说明(一) 使用 PyTorc ...

  4. yolov5实战之二维码检测

    目录 1.前沿 2.二维码数据 3.训练配置 3.1数据集设置 3.2训练参数的配置 3.3网络结构设置 3.4训练 3.5结果示例 附录:数据集下载 1.前沿 之前总结过yolov5来做皮卡丘的检测 ...

  5. 手把手教你用深度学习做物体检测(五):YOLOv1介绍

    "之前写物体检测系列文章的时候说过,关于YOLO算法,会在后续的文章中介绍,然而,由于YOLO历经3个版本,其论文也有3篇,想全面的讲述清楚还是太难了,本周终于能够抽出时间写一些YOLO算法 ...

  6. 手把手教你用深度学习做物体检测(六):YOLOv2介绍

    本文接着上一篇<手把手教你用深度学习做物体检测(五):YOLOv1介绍>文章,介绍YOLOv2在v1上的改进.有些性能度量指标术语看不懂没关系,后续会有通俗易懂的关于性能度量指标的介绍文章 ...

  7. 30分钟手把手教你学webpack实战

    30分钟手把手教你学webpack实战 阅读目录 一:什么是webpack? 他有什么优点? 二:如何安装和配置 三:理解webpack加载器 四:理解less-loader加载器的使用 五:理解ba ...

  8. 手把手教你写电商爬虫-第三课 实战尚妆网AJAX请求处理和内容提取

    版权声明:本文为博主原创文章,未经博主允许不得转载. 系列教程: 手把手教你写电商爬虫-第一课 找个软柿子捏捏 手把手教你写电商爬虫-第二课 实战尚妆网分页商品采集爬虫 看完两篇,相信大家已经从开始的 ...

  9. 转:手把手教你如何玩转Solr(包含项目实战)

    原文地址:手把手教你如何玩转Solr(包含项目实战) 参考原文

  10. 每天记录一点:NetCore获得配置文件 appsettings.json vue-router页面传值及接收值 详解webpack + vue + node 打造单页面(入门篇) 30分钟手把手教你学webpack实战 vue.js+webpack模块管理及组件开发

    每天记录一点:NetCore获得配置文件 appsettings.json   用NetCore做项目如果用EF  ORM在网上有很多的配置连接字符串,读取以及使用方法 由于很多朋友用的其他ORM如S ...

随机推荐

  1. JavaScript用策略模式消除if else 和 switch

    js程序中最常用的if else循环,如果分枝很多的的情况下难免使写出的程序又臭又长,但是根据需求又必须将这些分支处理,此时稍有经验的程序员可能会想到用switch case优化但是只是仅仅做到利于阅 ...

  2. java学习内容-1

    java学习内容-1 (一)jdk的使用 (二)定义标识符的规则 (三)java常用类 1.String类 2.Math类 3.Integer和Double类 4.输出 5.Scanner类 例子 ( ...

  3. 自动化混沌工程 ChaosMeta V0.6 版本发布

    混沌工程 ChaosMeta 的全新版本 V0.6.0 现已正式发布!该版本包含了许多新特性和增强功能,在编排界面提供了包括流量注入.度量等各类节点的支持,可视化支撑演练全流程.解决混沌工程原则中&q ...

  4. [C++]二叉链-二叉树存储

    二叉链存二叉树 预备知识 指针的熟练掌握 Bolg template模板的知识 Bolg 二叉树的基本知识 感谢: 代码参考:CSDN博主「云雨澄枫」的原创文章 链接 代码解析 结构体 BiNode ...

  5. [Python急救站课程]日期和时间的输出

    日期和时间的输出 from datetime import datetime # 引用datetime 库 now = datetime.now() # 获得当前日期和时间信息 print(now) ...

  6. JavaScript高级程序设计笔记11 期约与异步函数(Promise & Async Function)

    期约与异步函数 ES6新增Promise引用类型,支持优雅地定义和组织异步逻辑. ES8增加了使用async和await关键字定义异步函数的机制. 异步编程 JavaScript这种单线程事件循环模型 ...

  7. 【Flutter】一文读懂混入类Mixin

    [Flutter]一文读懂混入类Mixin 基本介绍 Mixin是一种有利于代码复用,又避免了多继承的解决方案. Mixin 是面向对象程序设计语言中的类,提供了方法的实现,其他类可以访问 Mixin ...

  8. 二分查找binary_search

    一.解释 二.常用操作 1.头文件 #include <algorithm> 2.使用方法 a.binary_search:查找某个元素是否出现. a.函数模板:binary_search ...

  9. Taro:高性能小程序的最佳实践

    前言 作为一个开放式的跨端跨框架解决方案,Taro 在大量的小程序和 H5 应用中得到了广泛应用.我们经常收到开发者的反馈,例如"渲染速度较慢"."滑动不够流畅" ...

  10. centos虚拟机安装

    目录 一.准备工作 1.vmware workstation软件安装 2.准备ios镜像 二.创建Centos虚拟机 三.进行Centos7的系统安装 四.虚拟机快照的使用 1.创建虚拟机快照 2.还 ...